Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
university:tools:lab_hw:adalm-sr1 [11 May 2021 14:49] – add more intro Robin Getzuniversity:tools:lab_hw:adalm-sr1 [23 Feb 2022 04:47] Joyce Velasco
Line 2: Line 2:
  
 ===== Description===== ===== Description=====
-The [[adi>ADALM-SR1]] (Analog Devices Active Learning Module, Switching Regulator #1) board is a "dis-integrated" DC-DC switcher. With today's [[adi>en/products/power-management/switching-regulators.html|modern controllers]], due to integration, everything is inside a single package which can make it difficult to understand some of the fundamental concepts. Dis-integrating (building the controller from fundamental building blocksenables the ability to investigate and manipulate signals that otherwise would be hidden from the user. With the ADALM-SR1, the user can configure it in multiple ways, and better understand switching concepts.+The Analog Devices Active Learning Module - Switching Regulator 1 or [[adi>ADALM-SR1]] board is a "dis-integrated" DC-DC switcher. With the highly integrated design of today's [[adi>en/products/power-management/switching-regulators.html|modern controllers]], it is difficult for users to understand some of the fundamental concepts as everything is built inside a single packageThe ability to disintegrate or build the controller from fundamental building blocks enables the user to investigate and manipulate signals. This usually cannot be easily done when using a fully integrated controller. With the ADALM-SR1, its design is built in such a way that the user can configure it in multiple ways, allowing better understanding of switching concepts.
  
 Here is a short introduction video: Here is a short introduction video:
Line 15: Line 15:
  
  
-The circuits required for these exercises exceed the complexity that can be constructed on a breadboard, so the ADALM-SR1 is required to run themalthough the simulations can be run beforehand to gain insight into the circuits' operation.+The circuits required for these exercises exceed the complexity that can be constructed on a breadboard, so the ADALM-SR1 is required to run themalthoughthe simulations can be done beforehand to gain insight into the circuits' operation.
  
 The Figures 1a and 1b show an overview of the board, along with connections to an ADALM2000 (m2k) and meters.\\ The Figures 1a and 1b show an overview of the board, along with connections to an ADALM2000 (m2k) and meters.\\
  
 {{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_overview.jpg?direct&600 |}} {{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_overview.jpg?direct&600 |}}
-<WRAP centeralign> Figure 1a. ADSRALM overview</WRAP>\\+<WRAP centeralign> Figure 1a. ADSRALM Overview</WRAP>\\
 {{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_overview.png?direct&1200 |}} {{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_overview.png?direct&1200 |}}
  
-<WRAP centeralign> Figure 1b. ADSRALM overview</WRAP>+<WRAP centeralign> Figure 1b. ADSRALM Overview</WRAP>
  
 ===== ADALM-SR1 Jumpers and Connections ===== ===== ADALM-SR1 Jumpers and Connections =====
Line 35: Line 35:
  
 ==== Inductance Selection ==== ==== Inductance Selection ====
-[[https://www.we-online.de/katalog/datasheet/749196141.pdf|A Wurth 749196141 6-winding coupled inductor]] is used in both boost and buck configurations. The datasheet inductance for a single winding is 8.5μH, with a DC resistance of 344 milliohms. The windings are connected in series on the ADALM-SR1, allowing the inductance to be changed as noted in the table below. (Values in the table are measured from a typical board.)+[[https://www.we-online.de/katalog/datasheet/749196141.pdf|A Wurth 749196141 6-winding coupled inductor]] is used in both boost and buck configurations. The data sheet inductance for a single winding is 8.5 μH, with a DC resistance of 344 milliohms. The windings are connected in series on the ADALM-SR1, allowing the inductance to be changedas noted in the table below. (Values in the table are measured from a typical board.)
 \\ \\
  
Line 41: Line 41:
 ^   Jumper   ^^^^^^^^ ^   Jumper   ^^^^^^^^
 |   **Position**     EXT IND     1 TAP     2 TAPS     3 TAPS     4 TAPS     5 TAPS     6 TAPS   | |   **Position**     EXT IND     1 TAP     2 TAPS     3 TAPS     4 TAPS     5 TAPS     6 TAPS   |
-|   **Function**     Ext. inductor at TP3, TP4     7.7μH inductance     31.5μH inductance     72.6μH inductance     131.5μH inductance     216.2μH inductance     313.4μH inductance   |+|   **Function**     Ext. inductor at TP3, TP4     7.7 μH inductance     31.5 μH inductance     72.6 μH inductance     131.5 μH inductance     216.2 μH inductance     313.4 μH inductance   |
 |   :::        ||||||| |   :::        |||||||
  
Line 48: Line 48:
  
 ==== Output Capacitors Selection ==== ==== Output Capacitors Selection ====
-A 4.7μF capacitor is always connected to the output of the circuit. An additional 47μF and 470μF can be added by installing jumpers according to the table below.+A 4.7 μF capacitor is always connected to the output of the circuit. An additional 47 μF and 470 μF can be added by installing jumpers, as shown in the table below.
  
 ^ ^   Output Capacitors Selection   ^^ ^ ^   Output Capacitors Selection   ^^
 ^   Jumper      ^   P8, P11   ^^ ^   Jumper      ^   P8, P11   ^^
 |   Position     Installed     Open   | |   Position     Installed     Open   |
-|   Function     P8 connect **aditional** 47μF capacitance     No additional capacitance   | +|   Function     P8 connect **additional** 47 μF capacitance     No additional capacitance   | 
-|   :::     P11 connect **aditional** 470μF capacitance     No additional capacitance   |+|   :::     P11 connect **additional** 470 μF capacitance     No additional capacitance   |
 |   :::        || |   :::        ||
  
Line 62: Line 62:
  
 ==== Load Resistors Selection ==== ==== Load Resistors Selection ====
-A resistive load may be connected to the output of the circuit. Resistances range from 12.5Ω to 200Ω, and may be added in parallel according to the table below. The jumpers are 3-position, with the righ-hand position connecting the resistor to ground, and the left-hand position allowing the effective resistance to be adjusted by Pulse-width-modulating the ground connection. +A resistive load may be connected to the output of the circuit. Resistances range from 12.5Ω to 200Ω, and may be added in parallelaccording to the table below. The jumpers are 3-position, with the right-hand position connecting the resistor to ground, and the left-hand position allowing the effective resistance to be adjusted by Pulse-width-modulating the ground connection. 
 \\ \\
 ^ ^   Load Resistors Selection   ^^ ^ ^   Load Resistors Selection   ^^
 ^   Jumper      ^   P18, P14, P13, P17, P16, P15   ^^ ^   Jumper      ^   P18, P14, P13, P17, P16, P15   ^^
 |   Position     Installed     Open   | |   Position     Installed     Open   |
-|   Function     P18 connect 200 Ω load resistance     No aditional load resistor connected   | +|   Function     P18 connect 200 Ω load resistance     No additional load resistor connected   | 
-|   :::     P14 connect 200 Ω load resistance     No aditional load resistor connected   | +|   :::     P14 connect 200 Ω load resistance     No additional load resistor connected   | 
-|   :::     P13 connect 100 Ω load resistance     No aditional load resistor connected   | +|   :::     P13 connect 100 Ω load resistance     No additional load resistor connected   | 
-|   :::     P17 connect 50 Ω load resistance     No aditional load resistor connected   | +|   :::     P17 connect 50 Ω load resistance     No additional load resistor connected   | 
-|   :::     P16 connect 25 Ω load resistance     No aditional load resistor connected   | +|   :::     P16 connect 25 Ω load resistance     No additional load resistor connected   | 
-|   :::     P15 connect 12.5 Ω load resistance     No aditional load resistor connected   |+|   :::     P15 connect 12.5 Ω load resistance     No additional load resistor connected   |
 |   :::        || |   :::        ||
 | Notes    |   **7V max across 25Ω, 12.5Ω resistors will turn on the Over Power LED illuminates as warning.**   || | Notes    |   **7V max across 25Ω, 12.5Ω resistors will turn on the Over Power LED illuminates as warning.**   ||
 \\ \\
-The R87 (LOAD CONTROL) potentiometer controls the duty cycle of all load resistors whose jumper is placed in the adjustable position, by swithcing the ground connection. (**YES** this is super weird, but it's convenient and it works much better than you'd think!) Duty cycle is guaranteed to be zero when fully counter-clockwise and 100% when fully clockwise. Thus the load can be a combination of fixed and variable resistancesand the exact duty cycle of the onboard PWM circuit can be measured at P40. The signal at P40 has a 1k impedance and maybe overdriven by a 3.3V logic signal, allowing the load to be stepped. +The R87 (LOAD CONTROL) potentiometer controls the duty cycle of all load resistors whose jumper is placed in the adjustable position, by switching the ground connection. (**YES** this is super weird, but it's convenient and it works much better than you'd think!) Duty cycle is guaranteed to be zero when fully counter-clockwise and 100% when fully clockwise. Thusthe load can be a combination of fixed and variable resistances and the exact duty cycle of the onboard PWM circuit can be measured at P40. The signal at P40 has a 1k impedance and maybe overdriven by a 3.3V logic signal, allowing the load to be stepped. 
 \\ \\
 The load PWM frequency is fixed at 200kHz, approximately 10x the typical operating frequency of most experiments, thus appearing as a steady (DC) load. The load PWM frequency is fixed at 200kHz, approximately 10x the typical operating frequency of most experiments, thus appearing as a steady (DC) load.
Line 226: Line 226:
  
 <WRAP round 80% download> <WRAP round 80% download>
-ADALM-SR1  Design & Integration Files+ADALM-SR1  Design & Integration Files\\
   * {{ :university:tools:lab_hw:adalm_sr1:02-059790-01-c.pdf | Schematics}}   * {{ :university:tools:lab_hw:adalm_sr1:02-059790-01-c.pdf | Schematics}}
 +</WRAP>
 +
 +===== Corner Case Test Report =====
 +
 +<WRAP round 80% download>
 +This is an informal internal test report, intended to exercise operating conditions outside those detailed in the experiments. This may be useful for those developing additional exercises.\\
 +  * {{ :university:tools:lab_hw:adalm_sr1:adalm-sr1_test_report.pptx | ADALM-SR1 Test Report}}
 </WRAP> </WRAP>
  
 <WRAP important>This page is for the released revision of the ADALM-SR1. Documentation for the pilot run (rev A) is here for reference: [[university:tools:lab_hw:adalm-sr1_rev_a|ADALM-SR1 hardware]]</WRAP> <WRAP important>This page is for the released revision of the ADALM-SR1. Documentation for the pilot run (rev A) is here for reference: [[university:tools:lab_hw:adalm-sr1_rev_a|ADALM-SR1 hardware]]</WRAP>
 //End of Document// //End of Document//
university/tools/lab_hw/adalm-sr1.txt · Last modified: 14 Mar 2023 06:38 by Joyce Velasco