Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
university:courses:electronics:electronics-lab-5m [24 Jul 2017 15:17] – change amplitude value to peak-peak Antoniu Miclausuniversity:courses:electronics:electronics-lab-5m [15 Nov 2018 10:10] – [Questions:] add Fritzing files Antoniu Miclaus
Line 24: Line 24:
  
 The waveform generator W1 should be configured for a 1 KHz Sine wave with 3 volt amplitude and 0 volt offset. The setup should be configured with scope channel 1+ connected to display the output W1. Scope channel 2 (2+) is used to measure alternately the waveform at the gate and drain of M<sub>1</sub>. The waveform generator W1 should be configured for a 1 KHz Sine wave with 3 volt amplitude and 0 volt offset. The setup should be configured with scope channel 1+ connected to display the output W1. Scope channel 2 (2+) is used to measure alternately the waveform at the gate and drain of M<sub>1</sub>.
 +{{ :university:courses:electronics:a5m_nf2.png? |}}
 +
 +<WRAP centeralign> Figure 2 Common source amplifier test configuration breadboard connection </WRAP>
  
 ===== Procedure: ===== ===== Procedure: =====
 +{{ :university:courses:electronics:a5m_nf3.png?500 |}}
 +
 +<WRAP centeralign> Figure 3 Common source amplifier test circuit, Scopy plot</WRAP>
  
 The voltage gain, A, of the common source amplifier can be expressed as the ratio of load resistor R<sub>L</sub> to the small signal source resistance r<sub>s</sub>. The transconductance, g<sub>m</sub>, of the transistor is a function of the drain current I<sub>D</sub> and the so called gate overdrive voltage, V<sub>GS</sub>-V<sub>th</sub> where V<sub>th</sub> is the threshold voltage. The voltage gain, A, of the common source amplifier can be expressed as the ratio of load resistor R<sub>L</sub> to the small signal source resistance r<sub>s</sub>. The transconductance, g<sub>m</sub>, of the transistor is a function of the drain current I<sub>D</sub> and the so called gate overdrive voltage, V<sub>GS</sub>-V<sub>th</sub> where V<sub>th</sub> is the threshold voltage.
Line 34: Line 40:
  
 {{:university:courses:electronics:a5m_e2.png?100|}} (2) {{:university:courses:electronics:a5m_e2.png?100|}} (2)
- 
-====== Self-biased configuration with negative feedback ====== 
- 
-{{ :university:courses:electronics:a5m_f3.png?500 |}} 
- 
-<WRAP centeralign> Figure 3 Self Biased configuration </WRAP> 
- 
-===== Questions: ===== 
- 
-How does adding negative feedback help to stabilize the DC operating point? 
  
 ====== Adding source degeneration ====== ====== Adding source degeneration ======
Line 62: Line 58:
  
 <WRAP centeralign> Figure 4 Source degeneration added </WRAP> <WRAP centeralign> Figure 4 Source degeneration added </WRAP>
 +
 +=====Hardware Setup =====
 +{{ :university:courses:electronics:a5m_nf5.png? |}}
 +
 +<WRAP centeralign> Figure 5 Source degeneration added, breadboard connection </WRAP>
 +===== Procedure: =====
 +{{ :university:courses:electronics:a5m_nf6.png?500 |}}
 +
 +<WRAP centeralign> Figure 6 Source degeneration added, Scopy plot </WRAP>
  
 ===== Questions: ===== ===== Questions: =====
Line 75: Line 80:
 ====== Increasing AC gain of source degenerated amplifier ====== ====== Increasing AC gain of source degenerated amplifier ======
  
-Adding the source degeneration resistor has improved the stability of the DC operating point at the cost decreased amplifier gain. A higher gain for AC signals can be restored to some extent by adding capacitor C<sub>2</sub>across the degeneration resistor R<sub>S</sub> as shown in figure 5.+Adding the source degeneration resistor has improved the stability of the DC operating point at the cost decreased amplifier gain. A higher gain for AC signals can be restored to some extent by adding capacitor C<sub>2</sub>across the degeneration resistor R<sub>S</sub> as shown in figure 4.
  
 {{ :university:courses:electronics:a5m_f5.png?500 |}} {{ :university:courses:electronics:a5m_f5.png?500 |}}
  
-<WRAP centeralign> Figure C<sub>2</sub> added to increase AC gain </WRAP>+<WRAP centeralign> Figure C<sub>2</sub> added to increase AC gain </WRAP> 
 +=====Hardware Setup ===== 
 +{{ :university:courses:electronics:a5m_nf8.png? |}} 
 + 
 +<WRAP centeralign> Figure 8 C<sub>2</sub> added, breadboard connection </WRAP> 
 +===== Procedure: ===== 
 +{{ :university:courses:electronics:a5m_nf9.png?500 |}} 
 + 
 +<WRAP centeralign> Figure 9 C<sub>2</sub> added, Scopy plot</WRAP> 
 +====== Self-biased configuration with negative feedback ====== 
 + 
 +{{ :university:courses:electronics:a5m_f3.png?500 |}} 
 + 
 +<WRAP centeralign> Figure 10 Self Biased configuration </WRAP> 
 + 
 +=====Hardware Setup ===== 
 +{{ :university:courses:electronics:a5m_nf11.png? |}} 
 + 
 +<WRAP centeralign> Figure 11 Self Biased configuration, breadboard connection </WRAP> 
 +===== Procedure: ===== 
 +{{ :university:courses:electronics:a5m_nf12.png?500 |}} 
 + 
 +<WRAP centeralign> Figure 12 Self Biased configuration, Scopy plot</WRAP> 
 +===== Questions: ===== 
 + 
 +How does adding negative feedback help to stabilize the DC operating point? 
 + 
 +**Resources:** 
 +  * Fritzing files: [[ https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/analogdevicesinc/education_tools/tree/master/m2k/fritzing/comm_source_amp_bb | comm_source_amp_bb]]
  
 ==== References for further reading: ==== ==== References for further reading: ====
university/courses/electronics/electronics-lab-5m.txt · Last modified: 25 Jun 2020 22:07 by 127.0.0.1