Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
university:courses:electronics:comms-lab-polyphase-filter [27 Mar 2017 17:07] – [Materials:] Doug Merceruniversity:courses:electronics:comms-lab-polyphase-filter [25 Jun 2020 22:07] (current) – external edit 127.0.0.1
Line 1: Line 1:
 +
 ======Activity: Polyphase Filter Circuits====== ======Activity: Polyphase Filter Circuits======
  
Line 34: Line 35:
 ====Hardware Setup:==== ====Hardware Setup:====
  
-The green squares indicate where to connect the Discovery module AWG, and scope channels.+The green squares indicate where to connect the ADALM2000 module AWG, and scope channels. 
 +{{ :university:courses:electronics:appf_nf3.png? |}}
  
-Open the Network Analyzer software tool in Waveforms. Configure the frequency sweep to start at 10 KHz and stop at 10 MHz. Set the amplitude to V and the offset to zero. Check the box "Use Channel 1 as reference" under the scope channels drop down menu to measure the phase of one output path with respect to the other.+<WRAP centeralign> Figure 3. Simplified First Order Polyphase Filter Breadboard Connection </WRAP> 
 + 
 +Open the Network Analyzer software tool in Scopy. Configure the frequency sweep to start at 10 KHz and stop at 30 MHz. Set the amplitude to V and the offset to zero. Check the box "Use Channel 1 as reference" under the scope channels drop down menu to measure the phase of one output path with respect to the other. 
 +{{ :university:courses:electronics:appf_nf4.png?500 |}} 
 + 
 +<WRAP centeralign> Figure 4. Scopy Network Analyzer output</WRAP>
  
 ====Procedure:==== ====Procedure:====
Line 47: Line 54:
 =====Differential Polyphase Tuned Amplifier===== =====Differential Polyphase Tuned Amplifier=====
  
-By adding second order L-C and C-L low and high pass filter sections as differential output loads in a NPN differential amplifier we can generate all four 90º phases ( i.e. 0º, 90º, 180º and 270º ) of an input sine wave signal. Such a tuned amplifier is shown in figure 3.+By adding second order L-C and C-L low and high pass filter sections as differential output loads in a NPN differential amplifier we can generate all four 90º phases ( i.e. 0º, 90º, 180º and 270º ) of an input sine wave signal. Such a tuned amplifier is shown in figure 5.
  
 ====Materials:==== ====Materials:====
- +ADALM2000 Active Learning Module\\
-Analog Discovery Lab hardware\\+
 Solder-less breadboard, and jumper wire kit\\ Solder-less breadboard, and jumper wire kit\\
 1 - SSM2212 NPN matched transistor pair ( Q<sub>1</sub>, Q<sub>2</sub> )\\ 1 - SSM2212 NPN matched transistor pair ( Q<sub>1</sub>, Q<sub>2</sub> )\\
Line 67: Line 73:
 ====Directions:==== ====Directions:====
  
-Build the circuit shown in figure on your solder-less breadboard. Use the SSM2212 matched transistor pair for Q<sub>1</sub> and Q<sub>2</sub>. Transistors Q<sub>3</sub> and Q<sub>4</sub> can be 2N3904 devices. Set L<sub>1</sub> = L<sub>2</sub> = 100 uH and C<sub>1</sub> = C<sub>2</sub> = 1nF. R<sub>1</sub> should be equal to R<sub>2</sub> and use 470 Ω for their value. Likewise, R<sub>3</sub> should be equal to R<sub>4</sub> and use 150 Ω for their value.+Build the circuit shown in figure on your solder-less breadboard. Use the SSM2212 matched transistor pair for Q<sub>1</sub> and Q<sub>2</sub>. Transistors Q<sub>3</sub> and Q<sub>4</sub> can be 2N3904 devices. Set L<sub>1</sub> = L<sub>2</sub> = 100 uH and C<sub>1</sub> = C<sub>2</sub> = 1nF. R<sub>1</sub> should be equal to R<sub>2</sub> and use 470 Ω for their value. Likewise, R<sub>3</sub> should be equal to R<sub>4</sub> and use 150 Ω for their value.
  
 {{ :university:courses:electronics:appf_f3.png?600 |}} {{ :university:courses:electronics:appf_f3.png?600 |}}
  
-<WRAP centeralign> Figure Polyphase Amplifier </WRAP>+<WRAP centeralign> Figure Polyphase Amplifier </WRAP>
  
 ====Hardware Setup:==== ====Hardware Setup:====
  
-The green squares indicate where to connect the Discovery module AWG, scope channels and power supplies. Be sure to turn on the power supplies only after you double check your wiring.+The green squares indicate where to connect the ADALM2000 module AWG, scope channels and power supplies. Be sure to turn on the power supplies only after you double check your wiring. 
 +{{ :university:courses:electronics:appf_nf6.png? |}}
  
-Open the voltage supply control window to turn on and off the fixed +5 and -5 volt power supplies. Open the Network Analyzer software tool in Waveforms. Configure the frequency sweep to start at 10 KHz and stop at 10 MHz. Set the amplitude to 500 mV and the offset to zero.+<WRAP centeralign> Figure 6. Polyphase Amplifier Breadboard Connection</WRAP> 
 + 
 +Open the voltage supply control window to turn on and off the fixed +5 and -5 volt power supplies. Open the Network Analyzer software tool in Scopy. Configure the frequency sweep to start at 100 Hz and stop at 30 MHz. Set the amplitude to 1V and the offset to zero.
  
 ====Procedure:==== ====Procedure:====
Line 85: Line 94:
 Turn on the power supplies. Connect scope input channel 2 through an AC coupling capacitor ( C<sub>4</sub> in figure 3 ) alternately to each of the four possible outputs at the ends of resistors R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> and R<sub>4</sub>. Run a single frequency sweep and store each sweep in a waveform snapshot to compare each output's relative gain and phase response. Be sure to export all the frequency sweep data to a .csv file for further analysis in either Excel or Matlab. Turn on the power supplies. Connect scope input channel 2 through an AC coupling capacitor ( C<sub>4</sub> in figure 3 ) alternately to each of the four possible outputs at the ends of resistors R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> and R<sub>4</sub>. Run a single frequency sweep and store each sweep in a waveform snapshot to compare each output's relative gain and phase response. Be sure to export all the frequency sweep data to a .csv file for further analysis in either Excel or Matlab.
  
-Using the scope and function generator software instruments ( in the time domain ) set the AWG frequency to the resonate frequency with the amplitude set to 500 mV. Trigger on scope channel 1. Observe the relative amplitudes and phases of the four outputs and store each waveform on channel 2 as a reference channel to compare the amplitude and phase of each output.+Using the scope and function generator software instruments ( in the time domain ) set the AWG frequency to the resonate frequency with the amplitude set to 1V peak-to-peak. Trigger on scope channel 1. Observe the relative amplitudes and phases of the four outputs and store each waveform on channel 2 as a reference channel to compare the amplitude and phase of each output. 
 +{{ :university:courses:electronics:appf_nf7.png?500 |}}
  
 +<WRAP centeralign> Figure 7. 0-degree Phase Shift</WRAP>
 +{{ :university:courses:electronics:appf_nf8.png?500 |}}
 +
 +<WRAP centeralign> Figure 8. 90-degree Phase Shift </WRAP>
 +{{ :university:courses:electronics:appf_nf9.png?500 |}}
 +
 +<WRAP centeralign> Figure 9. 180-degree Phase Shift </WRAP>
 +{{ :university:courses:electronics:appf_nf10.png?500 |}}
 +
 +<WRAP centeralign> Figure 10. 270-degree Phase Shift </WRAP>
 +
 +<WRAP round download>
 +**Resources:**
 +  * Fritzing files: [[downgit>education_tools/tree/master/m2k/fritzing/polyphase_filter_bb | polyphase_filter_bb]]
 +  * LTspice files: [[downgit>education_tools/tree/master/m2k/ltspice/polyphase_filter_ltspice | polyphase_filter_ltspice]]
 +</WRAP>
 ====Questions:==== ====Questions:====
  
Line 95: Line 121:
  
 **Return to Lab Activity [[university:courses:electronics:labs|Table of Contents]].** **Return to Lab Activity [[university:courses:electronics:labs|Table of Contents]].**
 +
 +
  
university/courses/electronics/comms-lab-polyphase-filter.1490627258.txt.gz · Last modified: 27 Mar 2017 17:07 by Doug Mercer