Wiki

no way to compare when less than two revisions

Differences

This shows you the differences between two versions of the page.


resources:eval:ad9680-1000ebz [23 Sep 2022 09:43] – [Obtaining an FFT] John Xavier Toledo
Line 1: Line 1:
 +====== EVALUATING THE AD9680/AD9690/AD9234 ANALOG-TO-DIGITAL CONVERTER ======
 +===== Preface =====
 +This user guide describes the [[adi>AD9680|AD9680]]/[[adi>AD9234|AD9234]] evaluation board which provides all of the support circuitry required to operate the ADC in its various modes and configurations. Users wanting to evaluate the single channel [[adi>AD9690|AD9690]] should utilize/evaluate Channel A on the AD9680-500EBZ, or AD9680-1000EBZ. The application software used to interface with the devices is also described. This user guide wiki applies to the following evaluation boards:
 +^ Evaluation Board Part Number      ^ Description       ^Board Revision       ^
 +| <fc #9400d3>AD9680-1250EBZ</fc>    | <fc #9400d3>Evaluation board for AD9680-1250; Full Bandwidth</fc>     | <fc #9400d3>9680CE04B</fc>     |
 +| <fc #9400d3>AD9680-1000EBZ</fc>    | <fc #9400d3>Evaluation board for AD9680-1000; Full Bandwidth</fc>     | <fc #9400d3>9680CE04B</fc>     |
 +| <fc #9400d3>AD9680-820EBZ</fc>     | <fc #9400d3>Evaluation board for AD9680-820; Full Bandwidth</fc>      | <fc #9400d3>9680CE04B</fc>     |
 +| <fc #9400d3>AD9680-500EBZ</fc>     | <fc #9400d3>Evaluation board for AD9680-500; Full Bandwidth</fc>      | <fc #9400d3>9680CE04B</fc>     |
 +| <fc #008000>AD9234-1000EBZ</fc>    | <fc #008000>Evaluation board for AD9234-1000; Full Bandwidth</fc>    | <fc #008000>9680CE04B</fc>     |
 +| <fc #008000>AD9234-500EBZ</fc>     | <fc #008000>Evaluation board for AD9234-500; Full Bandwidth</fc>      | <fc #008000>9680CE04B</fc>     |
 +| <fc #4682b4>AD9680-LF1000EBZ</fc>    | <fc #4682b4>Evaluation board for AD9680-1000; up to 1GHz Input Bandwidth</fc>     | <fc #4682b4>9680CE02B</fc>     |
 +| <fc #4682b4>AD9680-LF820EBZ</fc>     | <fc #4682b4>Evaluation board for AD9680-820; up to 1GHz Input Bandwidth</fc>      | <fc #4682b4>9680CE02B</fc>     |
 +| <fc #4682b4>AD9680-LF500EBZ</fc>     | <fc #4682b4>Evaluation board for AD9680-500; up to 1GHz Input Bandwidth</fc>      | <fc #4682b4>9680CE02B</fc>     |
 +| AD9234-LF1000EBZ    | Evaluation board for AD9234-1000; up to 1GHz Input Bandwidth     | 9680CE02B     |
 +| AD9234-LF500EBZ     | Evaluation board for AD9234-500; up to 1GHz Input Bandwidth      | 9680CE02B     |
 +\\
 +The [[adi>ad9680|AD9680]] and [[adi>ad9234|AD9234]] data sheets provide additional information and should be consulted when using the evaluation board. All documents and software tools are available at  [[adi>hsadcevalboard|www.analog.com/hsadcevalboard]]. For additional information or questions, send an email to highspeed.converters@analog.com.
  
 +===== AD9680/AD9234 Evaluation Board =====
 +{{ :resources:eval:ad9680evb2.jpg?direct600 |}}<WRAP centeralign>
 +//Figure 1. [[adi>AD9680|AD9680]]/[[adi>AD9234|AD9234]] Evaluation Board for full 2GHz Input Bandwidth//</WRAP>
 +{{ :resources:eval:ad9680_lfboard.jpg?direct600 |}}<WRAP centeralign>
 +//Figure 2. [[adi>AD9680|AD9680]]/[[adi>AD9234|AD9234]] Low Frequency Evaluation Board up to 1GHz Input Bandwidth//</WRAP>
 +Figure 3 below compares the bandwidth available on the AD9680/AD9234 normal evaluation boards and the **"LF"** boards{{ :resources:eval:gain_flatness_compare_ce04b_ce02b_5178_image001.png?direct |}}<WRAP centeralign>
 +//Figure 3. Comparison of Bandwidth on the Normal and the "LF" boards//</WRAP>
 +
 +===== Typical Measurement Setup =====
 +The [[adi>AD9680|AD9680-1000EBZ]]/[[adi>AD9234|AD9234-1000EBZ]] can be evaluated using the [[ads7-v2|ADS7-V2EBZ]] FPGA data capture boards. Figures 3 and 4 below show the [[adi>AD9680|AD9680-1000EBZ]]/[[adi>AD9234|AD9234-1000EBZ]] connected to the [[ads7-v1|ADS7-V1EBZ]] and [[ads7-v2|ADS7-V2EBZ]] respectively. 
 +{{ :resources:eval:ad9680_setup.jpg?direct&600 |}}<WRAP centeralign>
 +//Figure 3. Evaluation Board Connection—[[adi>AD9680|AD9680-1000EBZ]]/[[adi>AD9234|AD9234-1000EBZ]] (on Left) and [[ads7-v1|ADS7-V1EBZ]] (on Right)//</WRAP>
 +<WRAP>**Please note : ADS7-V1EBZ has been obsoleted and is NOT recommended for new evaluations.**
 +</WRAP>
 +{{ :resources:eval:ad9680_setup-new_copy.jpg?direct&600 |}}<WRAP centeralign>
 +//Figure 4. Evaluation Board Connection—[[adi>AD9680|AD9680-LF1000EBZ]]/[[adi>AD9234|AD9234-LF1000EBZ]] (on Left) and [[ads7-v2|ADS7-V2EBZ]] (on Right)//
 +</WRAP>
 +===== Features =====
 +  * Full featured evaluation board for the [[adi>AD9680|AD9680]] and [[adi>AD9234|AD9234]]. Includes
 +    * AD9680-1000EBZ, AD9680-LF1000EBZ
 +    * AD9680-820EBZ, AD9680-LF820EBZ
 +    * AD9680-500EBZ, AD9680-LF500EBZ
 +    * AD9234-1000EBZ, AD9234-LF1000EBZ
 +    * AD9234-500EBZ, AD9234-LF500EBZ
 +  * SPI interface for setup and control
 +  * Wide band Balun driven input for the AD9680-1000EBZ, AD9680-820EBZ, AD9680-500EBZ, AD9234-1000EBZ and AD9234-500EBZ
 +  * Double balun input for AD9680-LF1000EBZ, AD9680-LF820EBZ, AD9680-LF500EBZ, AD9234-LF1000EBZ and AD9234-LF500EBZ
 +  * No external supply needed. Uses 12V-1A and 3.3V-3A supplies from FMC
 +  * VisualAnalog® and SPI controller software interfaces
 +  * On-board Crystal oscillator for AD9680-LF1000EBZ, AD9234-LF1000EBZ, AD9680-500EBZ, AD9234-LF500EBZ
 +
 +===== Helpful Documents =====
 +  * [[adi>AD9680|AD9680]] Data Sheet or [[adi>AD9234|AD9234]] Data Sheet
 +  * [[:resources:eval:ads7-v2|ADS7-V2EBZ]], //ADS7-V2EBZ Evaluation Kit Wikipage User Guide//
 +  * [[adi>an-905|AN-905 Application Note]], //VisualAnalog Converter Evaluation Tool Version 1.0 User Manual// 
 +  * [[adi>an-878|AN-878 Application Note]], //High Speed ADC SPI Control Software//
 +  * [[adi>an-877|AN-877 Application Note]], //Interface to High-Speed ADCs via SPI//
 +  * [[adi>an-835|AN-835 Application Note]], //Understanding ADC Testing and Evaluation//
 +===== Software Needed =====
 +  * [[adi>en/design-center/interactive-design-tools/visualanalog.html | VisualAnalog]]
 +  * [[adi>en/design-center/interactive-design-tools/spicontroller.html | SPIController ]]
 +===== Design and Integration Files =====  
 +  * {{:resources:eval:ad9680:9680ce04b.zip|AD9680CE04B schematic, BOM, Gerber files}}
 +  * {{:resources:eval:ad9680:9680ce02b.zip|AD9680CE02B schematic, BOM, Gerber files}}
 +===== Equipment Needed =====
 +  * Analog signal source and antialiasing filter
 +  * Sample clock source 
 +  * 12V, 6.5A switching power supply (such as the SL POWER CENB1080A1251F01 supplied with [[ads7-v2|ADS7-V2EBZ]])
 +  * PC running Windows®
 +  * USB 2.0 port
 +  * [[adi>AD9680|AD9680]] or [[adi>AD9234|AD9234]] Evaluation board
 +  * [[ads7-v2|ADS7-V2EBZ]] FPGA-based data capture kit
 +===== Getting Started =====
 +This section provides quick start procedures for using the evaluation board for AD9680 or AD9234. \\
 +
 +==== Configuring the Board ====
 +Before using the software for testing, configure the evaluation board as follows: 
 +  - Connect the evaluation board to the [[ads7-v2|ADS7-V2EBZ]] data capture board, as shown in Figure 2.
 +  - Connect one 12V, 6.5A switching power supply (such as the CENB1080A1251F01 supplied) to P4 on the [[ads7-v2|ADS7-V2EBZ]] board. Connect the Standard-B USB port of the [[ads7-v2|ADS7-V2EBZ]] board to the PC with the supplied USB cable. 
 +  - Turn on the [[ads7-v2|ADS7-V2EBZ]]. 
 +  - The [[ads7-v2|ADS7-V2EBZ]] will appear in the Device Manager as shown in Figure 3.{{ :resources:eval:fig2_devmgr.png?nolink&300 |}}<WRAP centeralign>//Figure 4. Device Manager showing [[ads7-v1|ADS7-V1EBZ]]//</WRAP>
 +  - If the Device Manager does not show the [[ads7-v2|ADS7-V2EBZ]] listed as shown in Figure 2, unplug all USB devices from the PC, uninstall and re-install SPIController and VisualAnalog and restart the hardware setup from step 1.
 +  - On the ADC evaluation board, provide a clean, low jitter 1GHz clock source to connector J801 and set the amplitude to 14dBm. This is the ADC Sample Clock.
 +  - On the ADC evaluation board, provide a clean, low jitter clock source to connector J804 and set the amplitude to 10dBm. This is the Reference Clock for the gigabit transceivers in the FPGA. The REFCLK frequency can be calculated using the following empirical formulae:<WRAP centeralign> <m> LaneLineRate=M*Nprime*(10/8)*f_{out}/L </m>bps/lane, where </WRAP><WRAP centeralign> <m> f_{out} = f_{ADC SAMPLE CLOCK}/DecimationRatio, Nprime=8 or 16 </m>//(Default Nprime = 16)//</WRAP><WRAP centeralign> <m> REFCLK = LaneLineRate/20 </m></WRAP>
 +  - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel A to P200. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)
 +  - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel B to P202. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)
 +
 +==== Visual Analog Setup ====
 +  - Click Start <m>right</m> All Programs <m>right</m> Analog Devices <m>right</m> VisualAnalog <m>right</m> VisualAnalog
 +  - On the VisualAnalog “New Canvas” window, click **ADC**<m>right</m>**Dual**<m>right</m>**AD9680** or **ADC**<m>right</m>**Dual**<m>right</m>**AD9234**{{ :resources:eval:fig3_selecting_canvas.png?nolink |}}<WRAP centeralign>//Figure 5. Selecting the [[adi>AD9680|AD9680]] canvas //</WRAP>
 +  - At this point, VisualAnalog will automatically detect the evaluation board and the FPGA data capture board and ask if it can program the FPGA with the appropriate bin file. This is shown in figure 6. Programming the FPGA will provide power to the evaluation board. {{ :resources:eval:fpga_program_prompt.png?direct&300 |}}<WRAP centeralign>//Figure 6. Programming the [[ads7-v2|ADS7-V2EBZ]]//</WRAP>
 +  - If VisualAnalog opens with a collapsed view, click on the “Expand Display” icon (see figure 7){{ :resources:eval:fig4_expand_display.png?nolink |}}<WRAP centeralign>//Figure 7. Expanding Display in VA//</WRAP>
 +  - Click the **Settings** button in the **ADC Data Capture** block as shown in Figure 8 {{ :resources:eval:fig5_change_adc_capture_settings.png?nolink&300 |}}<WRAP centeralign>//Figure 8. Changing the ADC Capture Settings//</WRAP>
 +  - On the **General** tab make sure the clock frequency is set to the appropriate sample rate (eg. **1000MHz** or **500MHz**). The FFT capture length may be changed to 131072 (128k) or 262144 (256k) per channel. The ADs7-V2 FPGA software supports up to 2M FFT capture (1M per channel){{ :resources:eval:adc_data_capture_settings.png?direct&600 |}}<WRAP centeralign>//Figure 9. Setting the clock frequency and Capture length//</WRAP>
 +  - On the **Device** tab. Make sure that **Enable Alternate REFCLK** option is unchecked.
 +  - Click **OK**
 +==== SPIController Setup ====
 +  - Click Start <m>right</m> All Programs <m>right</m> Analog Devices <m>right</m> SPIController <m>right</m> SPIController
 +  - Select the appropriate configuration file when prompted.
 +  - In the **Global** tab, under the **Generic Read/Write** section, write 0x81 to register 0x000. This issues a Soft reset for the DUT. {{ :resources:eval:spi_soft_reset.png?600 |}}<WRAP centeralign>//Figure 10. Sending a Soft Reset to the AD9680//</WRAP>
 +  - Individual Channel control for **ADC A** and **ADC B** are done using the **Device Index Register (0x008)** in the Global tab.{{ :resources:eval:fig10_devindex.png?400 |}}<WRAP centeralign>//Figure 11. Device Index for ADC Channel A and Channel B//</WRAP>
 +  - Under **ADC A** and **ADC B** tabs the options for Channel A and B are listed. Default settings have been programmed to ensure optimal performance for the input bandwidth and sample rate. Only the following options need to be operated with:  
 +    - **Chip Configuration Register (0x002)**: This option allows the channel to be powered on 
 +    - **Buffer Current Setting (0x018)**: This option allows the buffer current to change to enable better harmonic performance at different frequencies. At high analog input frequencies, the buffer current may need to be increased to optimize harmonic distortion performance (HD2, HD3). Keep in mind that at high frequencies, the performance is also jitter limited. So increasing the buffer currents may lead to diminishing returns with higher power consumption. Refer to the datasheet to understand the relationship between I<sub>AVDD3</sub> and Buffer Current Setting. 
 +    - **Analog Input Differential Termination (0x016)**: This sets the input termination. Recommended settings are 500, 200, 100, 50 ohms. At lower termination settings, the harmonic distortion performance may show improvement, but the analog input signal amplitude will be reduced. 
 +    - **Input Full Scale Range (0x025)**: At high input frequencies, in order to preserve the linearity of the input buffer, it may be beneficial to reduce the input full-scale range in order to get more harmonic distortion performance. This in turn may negatively affect the SNR of the ADC.
 +===== Sample Configuration 1: Full Bandwidth Mode =====
 +  - Set the ADC Configuration Registers in **ADCBase0** tab. Write **Chip Mode Control Register** address 0x200 to **Full Bandwidth Mode** and **Chip Decimation Ratio Control Register** 0x201 to **Full Sample Rate**.{{ :resources:eval:ad9680_fbw_chip.png?300 |}}<WRAP centeralign>//Figure 12. Setting Chip Mode Control and Decimation Ratio Registers//</WRAP>
 +  - For JESD204B setting, proceed to **ADCBase3** tab. Check the **Serial Transmit Power Down** box in **JESD204B Link Control Register (0x571)**.{{ :resources:eval:ad9680_jesd_571.png?400 |}}<WRAP centeralign>//Figure 13. JESD204B Serial Transmit Power Down//</WRAP>
 +  - Set the Lane Rate setting register 0x56E to **Maximum Lane Rate**. The decision to use **Maximum Lane Rate** mode or **Low Lane Rate** mode should be based on the Lane Line Rate that was calculated in [[/resources/eval/ad9680-1000ebz#configuring_the_board|Configuring the Board]] section.{{ :resources:eval:fig8_lane_rate_ctrl.png?nolink |}}<WRAP centeralign>//Figure 14. Setting the JESD204B Lane Rate//</WRAP>
 +  - Set the **JESD204B Quick Configuration register (0x570)**. For 1000MSPS operation with **NO** DDCs (//Full Bandwidth Mode//), the values for **L.M.F** are **4.2.1**{{ :resources:eval:ad9680_jesd_570.png?300 |}}<WRAP centeralign>//Figure 15. Setting the JESD204B Quick Configuration Register//</WRAP>
 +  - Proceed to **ADCBase4** tab and set/read the registers 0x58B, 0x58C, 0x58D, and 0x58E to check if the desired JESD204B configurations on ADCBase3 tab are reflected.{{ :resources:eval:ad9680_jesd_adcbase4.png?600 |}}<WRAP centeralign>//Figure 16. Reading the JESD204B Configuration Registers//</WRAP>
 +  - On address **0x58F**, change the Converter Resolution to **14** for AD9680 (12 for AD9234).
 +  - Back to **ADCBase3** tab, uncheck the **Serial Transmit Power Down** box in JESD204B Link Control Register (0x571).
 +  - After the quick configuration setting is completed, the **PLL Lock Detect register 0x56F** will read **0x80** to denote a lock. The SPIController interface will show a "1" to denote a lock. {{ :resources:eval:ad9680_jesd_pll.png?400 |}}<WRAP centeralign>//Figure 17. Reading the PLL Status Register//</WRAP>
 +==== Obtaining an FFT ====
 +  - Click the Run button in VisualAnalog , you should see the captured data similar to the plot shown in Figure 18.{{ :resources:eval:fig12_cha172mhz_17p68dbm_2xibuff.png?nolink |}}<WRAP centeralign>//Figure 18. AD9680-1000 FFT at 170MHz Analog Input//</WRAP>
 +  - Adjust the amplitude of the input signal so that the fundamental is at the desired level. (Examine the **Fund Power** reading in the left panel of the VisualAnalog FFT window.)
 +  - To save the FFT plot do the following
 +  - Click on the Float Form button in the FFT window{{ :resources:eval:fig13_floatform.png?nolink |}}<WRAP centeralign>//Figure 19. Floating the FFT window//</WRAP>
 +  - Click on File <m>right</m> Save Form As button and save it to a location of choice{{ :resources:eval:fig14_savingfft.png?nolink |}}<WRAP centeralign>//Figure 20. Saving the FFT//</WRAP>
 +
 +===== Sample Configuration 2: Two ADCs Plus Two DDCs, Decimate by 4 =====
 +  - In the VisualAnalog Setup, follow Steps 1-5 and after that, click the **ADC Data Capture Settings**, remove **Ch.A and Ch.B** output data, and add **Ch. DDC0 and Ch. DDC1** output data.{{ :resources:eval:ad9680_ddc_va_2ddcs.png?600 |}}<WRAP centeralign>//Figure 20. VisualAnalog ADC Data Capture Settings for DDC//</WRAP>
 +  - In the SPIController Setup, follow Steps 1-4.
 +  - Set the ADC Configuration Registers in **ADCBase0** tab. Write **Chip Mode Control Register (0x200)** to **Two Digital Down Converters** and **Chip Decimation Ratio Control Register (0x201)** to **Decimate by 4**.{{ :resources:eval:ad9680_ddc_chip_mode.png?300 |}}<WRAP centeralign>//Figure 22. Setting Chip Mode Control and Decimation Ratio Registers//</WRAP>
 +  - For DDC settings, proceed to **ADCBase1** tab and configure DDC0 and DDC1 Control Registers with corresponding addresses of **0x310** and **0x330**, respectively, to **Real Mixer, Variable IF Mode, Complex (I/Q) Decimate by 4**. Channel Input Selection for address **0x311** is set to **Channel A** for I and Q while address **0x331** is set to **Channel B** for I and Q. {{ :resources:eval:ad9680_ddc_setting.png?600 |}}<WRAP centeralign>//Figure 23. DDC Control Registers//</WRAP>
 +  - For frequency tuning word (FTW), addresses **0x314-315** are set as required by application for DDC0, and addresses **0x334-335** are set as required by application for DDC1. Figure xx below shows the calculation for NCO Frequency Tuning Word. {{ :resources:eval:ad9680_ddc_ftw_setting.png?600 |}}<WRAP centeralign>//Figure 24. Frequency Tuning Word Formula//</WRAP>
 +  - After setting all DDC registers, go to **Generic Write/Read** in **Global** tab and write **0x10** to address **0x300 (DDC soft reset)**, and write back to **0x00 (DDC normal operation)**. Same process can be done by checking and unchecking the **DDC Soft Reset** box. {{ :resources:eval:ad9680_ddc_soft_reset.png?300 |}}<WRAP centeralign>//Figure 25. DDC Synchronization Control Register//</WRAP>
 +  - For JESD204B setting, proceed to **ADCBase3** tab. Check the **Serial Transmit Power Down** box in **JESD204B Link Control Register (0x571)**.{{ :resources:eval:ad9680_jesd_571.png?400 |}}<WRAP centeralign>//Figure 26. JESD204B Serial Transmit Power Down//</WRAP>
 +  - Set the Lane Rate setting register 0x56E to **Maximum Lane Rate**. The decision to use **Maximum Lane Rate** mode or **Low Lane Rate** mode should be based on the Lane Line Rate that was calculated in [[/resources/eval/ad9680-1000ebz#configuring_the_board|Configuring the Board]] section.{{ :resources:eval:fig8_lane_rate_ctrl.png?nolink |}}<WRAP centeralign>//Figure 27. Setting the JESD204B Lane Rate//</WRAP>
 +  - Set the **JESD204B Quick Configuration register (0x570)**. For 1000MSPS operation with **2** DDCs (//Two Digital Down Converters//), the values for **L.M.F** are **2.4.4**.{{ :resources:eval:ad9680_ddc_jesd_570.png?300 |}}<WRAP centeralign>//Figure 28. Setting the JESD204B Quick Configuration Register//</WRAP>
 +  - Proceed to **ADCBase4** tab and set/read the registers 0x58B, 0x58C, 0x58D, and 0x58E to check if the desired JESD204B configurations on ADCBase3 tab are reflected.{{ :resources:eval:ad9680_ddc_jesd_quick_config.png?600 |}}<WRAP centeralign>//Figure 29. Reading the JESD204B Configuration Registers//</WRAP>
 +  - On address **0x58F**, change the Converter Resolution to **14** for AD9680 (12 for AD9234).
 +  - Back to **ADCBase3** tab, uncheck the **Serial Transmit Power Down** box in JESD204B Link Control Register (0x571).
 +  - After the quick configuration setting is completed, the **PLL Lock Detect register 0x56F** will read **0x80** to denote a lock. The SPIController interface will show a "1" to denote a lock. {{ :resources:eval:ad9680_jesd_pll.png?400 |}}<WRAP centeralign>//Figure 30. Reading the PLL Status Register//</WRAP>
 +
 +==== Obtaining an FFT ====
 +  - Click the Run button in VisualAnalog , you should see the captured data similar to the plot shown in Figure 32.{{ :resources:eval:ad9680_ddc_fft.png?nolink |}}<WRAP centeralign>//Figure 32. AD9680-1000 FFT at 150.3MHz Analog Input, NCO_FTW = 155MHz//</WRAP>
 +  - Adjust the amplitude of the input signal so that the fundamental is at the desired level. (Examine the **Fund Power** reading in the left panel of the VisualAnalog FFT window.)
 +===== Validating Deterministic Latency Using Subclass 1 Operation =====
 +The following .zip files contain the files needed for users to validate subclass 1 operation and observe the latency  differences between subclass 0 and subclass 1 operation.  The "Validating Subclass 1 Operation of the AD9680" document will guide the user through the necessary steps to perform this validation.  SPI Controller scripts for several full bandwidth modes are included for convenience.
 +{{:resources:eval:ad9680_ads7v2_dl_demo.zip|}}
 +{{:resources:eval:spicontroller_scripts_for_dl_demo.zip|}}
 +
 +
 +===== Troubleshooting Tips =====
 +** FFT plot appears abnormal **
 +  * If you see a normal noise floor when you disconnect the signal generator from the analog input, be sure you are not overdriving the ADC. Reduce input level if necessary. 
 +  * In VisualAnalog, Click on the Settings button in the **Input Formatter** block. Check that **Number Format** is set to the correct encoding (twos compliment by default). Repeat for the other channel.
 +  * Issue a **Data Path Soft Reset** through SPIController **Global** tab as shown in Figure 33{{ :resources:eval:fig15_datapathsoftreset.png?nolink |}}<WRAP centeralign>//Figure 33. Issuing a data path soft reset through SPIController//</WRAP>
 +
 +** The FFT plot appears normal, but performance is poor. **
 +  * Make sure you are using the appropriate band-pass filter on the analog input.
 +  * Make sure the signal generators for the clock and the analog input are clean (low phase noise).
 +  * If you are using non-coherent sampling, change the analog input frequency slightly, or use coherent frequencies.
 +  * Make sure the SPI config file matches the product being evaluated.
 +
 +** The FFT window remains blank after the Run button is clicked **
 +  * Make sure the evaluation board is securely connected to the ADS7-V2.
 +  * Make sure the FPGA has been programmed by verifying that the **Config DONE** LED is illuminated on the ADS7-V2.  If this LED is not illuminated reprogram the FPGA through VisualAnalog. If the LED still does not illuminate disconnect the USB and power cord for 15 seconds. Connect again and repeat the ADS7-V2 setup process.
 +  * Make sure the correct FPGA //bin// file was used to program the FPGA.
 +  * Be sure that the correct sample rate is programmed. Click on the **Settings** button in the **ADC Data Capture** block in VisualAnalog, and verify that the **Clock Frequency** is properly set.{{ :resources:eval:fig6_adc_capture_settings.png?nolink |}}<WRAP centeralign>//Figure 34. Setting the correct clock frequeency in VisualAnalog//</WRAP>
 +  * Ensure that the REFCLOCK is ON and set to the appropriate frequency.
 +  * Restart SPIController.
 +
 +** VisualAnalog indicates that the “FIFO capture timed out” or "FIFO not ready for read back" **
 +  * Make sure all power and USB connections are secure.
 +  * Make sure that the REFCLOCK is ON and set to the appropriate frequency.
 +
 +** VisualAnalog displays a blank FFT when the RUN button is clicked **
 +  * Ensure that the clock to the ADC is supplied. Using SPIController **ADCBase0** tab the status of the clock can be read out. See figure 35.{{ :resources:eval:fig17_clockdetect.png?nolink |}}<WRAP centeralign>//Figure 35. Clock Detection Status Register//</WRAP>
 +  * Ensure that the ADC's PLL is locked by checking the status of the PLL lock detect register 0x56F. This can be done using SPIController.
resources/eval/ad9680-1000ebz.txt · Last modified: 05 Feb 2024 03:49 by Deferson Romero