Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
university:tools:lab_hw:adalm-sr1 [27 Jan 2020 11:53] – [FET Selection] Mihai Ionut Suciuuniversity:tools:lab_hw:adalm-sr1 [14 Mar 2023 06:38] (current) – updated the design files download link Joyce Velasco
Line 1: Line 1:
 ====== ADALM-SR1 hardware ====== ====== ADALM-SR1 hardware ======
 +
 ===== Description===== ===== Description=====
-The ADALM-SR1 (Analog Devices Active Learning ModuleSwitching Regulator #1board is a companion module for several switching regulator exercises covering buck and boost regulators: +The Analog Devices Active Learning Module Switching Regulator 1 or [[adi>ADALM-SR1]] board is a "disintegrated" DC-DC switcher. With the highly integrated design of today'[[adi>en/products/power-management/switching-regulators.html|modern controllers]], it is difficult for users to see and understand the concepts of each fundamental component, as everything is built a single package. The ability to disintegrate or build the controller from fundamental building blocks enables users to investigate and manipulate signals. This usually cannot be easily done when using a fully integrated controller. The ADALM-SR1 is designed in such a way that the user can configure it in multiple ways, allowing better understanding of switching concepts.
-[[university:courses:electronics:buck_converter_basics|Activity: Buck Converter Basics]]+
  
-The circuits required for these exercises exceed the complexity that can be constructed on a breadboard, so the ADALM-SR1 is required to run them, although the simulations can be run beforehand to gain insight.+Here is a short introduction video: 
 +{{youtube>7j4Y0WVEtjU}}
  
-The Figure 1 shows an overview of the boardalong with connections to an ADALM2000 (M2K) and meters.+We have started with several switching regulator exercises covering buck and boost regulators that can be used with the  ADALM-SR1 board.  
 + 
 +[[university:labs:open_loop_boost_and_buck_adalm2000|Activity: Boost and Buck converter elements and open-loop operation]]\\ 
 +[[university:labs:closed_loop_buck_adalm2000|Activity: Buck Converters: closed loop operation]]\\ 
 +[[university:labs:closed_loop_boost_adalm2000|Activity: Boost Converters: closed loop operation]]\\ 
 + 
 + 
 + 
 +The circuits required for these exercises exceed the complexity that can be constructed on a breadboard, so the ADALM-SR1 is required to run them. However, the simulations can be done beforehand to gain insight into the circuits' operation. 
 + 
 +The Figures 1a and 1b show an overview of the board along with connections to an ADALM2000 (m2k) and meters.\\
  
 {{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_overview.jpg?direct&600 |}} {{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_overview.jpg?direct&600 |}}
-{{ :university:tools:lab_hw:adalm-sr1.jpg |}}+<WRAP centeralign> //Figure 1a. ADSRALM Overview//</WRAP>\\ 
 +{{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_overview.png?direct&1200 |}}
  
-<WRAP centeralign> Figure 1. ADSRALM overview</WRAP>+<WRAP centeralign> //Figure 1b. ADSRALM Overview//</WRAP>
  
 ===== ADALM-SR1 Jumpers and Connections ===== ===== ADALM-SR1 Jumpers and Connections =====
-The ADALM-SR1 uses 0.635mm (0.025-mil) headers for configuration jumpers, signal inputs, and signal outputs. Signal inputs and outputs are 2-conductor headers with 5.08mm (200-mil) pitch so that they cannot be confused with configuration jumpers. The lower conductor is always a ground connection (that is not always used) and an arrow indicates whether the upper conductor is an input or output.+The ADALM-SR1 uses 0.635 mm (0.025-mil) headers for configuration jumpers, signal inputs, and signal outputs. Signal inputs and outputs are 2-conductor headers with 5.08 mm (200-mil) pitch so that they cannot be confused with configuration jumpers. The lower conductor is always a ground connection (that is not always used)and an arrow indicates whether the upper conductor is an input or output.
  
-(PLACEHOLDERS) 
-The default jumper configurations for this board model are as follows: 
-^ Jumper ^Function   ^ Default Setting      ^ 
-|Px |Power Supply Select|Shunt installed across pins 2 & 3 (5V from Arduino) | 
-|Py |Inductor Tap #|Shunt installed across pins 1 & 2 (6 taps/max inductance) | 
-|Pz |Inductor Voltage |Open (for M2K connection) | 
  
-|All Others ||Open / no shunt installed |+\\
  
 +{{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_topology_modes_loads.png?direct&1200 |}}
 +<WRAP centeralign> //Figure 2. Topology, Mode Selection, and Loads//</WRAP>
  
 +==== Inductance Selection ====
 +[[https://www.we-online.de/katalog/datasheet/749196141.pdf|A Wurth 749196141 6-winding coupled inductor]] is used in both boost and buck configurations. The data sheet inductance for a single winding is 8.5 μH, with a DC resistance of 344 milliohms. The windings are connected in series on the ADALM-SR1, allowing the inductance to be changed, as noted in the table below. Values in the table are measured from a typical board.
 \\ \\
  
-==== Inductance Selection ==== +^ ^   Inductance Selection (P3)   ^^^^^^^ 
-^ ^   Inductance Selection   ^^^^^^^ +^   Jumper   ^^^^^^^^ 
-^   Jumper     P3   ^^^^^^^ +|   **Position**   |   EXT IND     1 TAP     2 TAPS     3 TAPS     4 TAPS     5 TAPS     6 TAPS   | 
-|   Position     EXT IND     1 TAP     2 TAPS     3 TAPS     4 TAPS     5 TAPS     6 TAPS   | +|   **Function**   |   Ext. inductor at TP3TP4     7.7μH inductance     31.5μH inductance     72.6μH inductance     131.5μH inductance     216.2μH inductance     313.4μH inductance   | 
-|   Function     Select external inductor connected between TP3 and TP4     Select 7.7 <m>mu</m>H inductance     Select 31.5 <m>mu</m>H inductance     Select 72.6 <m>mu</m>H inductance     Select 131.5 <m>mu</m>H inductance     Select 216.2 <m>mu</m>H inductance     Select 313.4 <m>mu</m>H inductance   | +|   :::        |||||||
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p3.jpg |}}   |||||||+
  
 +\\
 +\\
  
-==== Topology Selection ==== +==== Output Capacitors Selection ==== 
-^ ^   Topology Selection   ^^ +A 4.7 μF capacitor is always connected to the output of the circuit. An additional 47 μF and 470 μF can be added by installing jumpers, as shown in the table below.
-^   Jumper      ^   P37   ^^ +
-|   Position     BUCK     BOOST   | +
-|   Function     Select BUCK topology     Select BOOST topology   | +
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p37.jpg |}}   ||+
  
- 
-==== Output Capacitors Selection ==== 
 ^ ^   Output Capacitors Selection   ^^ ^ ^   Output Capacitors Selection   ^^
 ^   Jumper      ^   P8, P11   ^^ ^   Jumper      ^   P8, P11   ^^
 |   Position     Installed     Open   | |   Position     Installed     Open   |
-|   Function     P8 connect **aditional** 47<m>mu</m>F capacitance     Keep only 47<m>mu</m>capacitance   | +|   Function     P8 connect **additional** 47μF capacitance     No additional capacitance   | 
-|   :::     P11 connect **aditional** 470<m>mu</m>F capacitance     Keep only 47<m>mu</m>capacitance   | +|   :::     P11 connect **additional** 470μF capacitance     No additional capacitance   | 
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p8_p11.jpg |}}   ||+|   :::        ||
  
  
-==== Feedback Selection ==== +\\ 
-^ ^   Feedback Selection   ^^^ +\\ 
-^   Jumper      ^   P20   ^^^ +
-|   Position     5V     12V     ALT   | +
-|   Function     Select feedback resistors used for buck topology     Select feedback resistors used for boost topology     Select experimental feedback resistors   | +
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p20.jpg |}}   |||+
 ==== Load Resistors Selection ==== ==== Load Resistors Selection ====
 +A resistive load may be connected to the output of the circuit. Resistances range from 12.5 Ω to 200 Ω and may be added in parallel, according to the table below. The jumpers are 3-position, with the right-hand position connecting the resistor to ground and the left-hand position allowing the effective resistance to be adjusted by Pulse-width-modulating the ground connection. 
 +\\
 ^ ^   Load Resistors Selection   ^^ ^ ^   Load Resistors Selection   ^^
 ^   Jumper      ^   P18, P14, P13, P17, P16, P15   ^^ ^   Jumper      ^   P18, P14, P13, P17, P16, P15   ^^
 |   Position     Installed     Open   | |   Position     Installed     Open   |
-|   Function     P18 connect 200 <m>Omega</m> load resistance     No aditional load resistor connected   | +|   Function     P18 connect 200 Ω load resistance     No additional load resistor connected   | 
-|   :::     P14 connect 200 <m>Omega</m> load resistance     No aditional load resistor connected   | +|   :::     P14 connect 200Ω load resistance     No additional load resistor connected   | 
-|   :::     P13 connect 100 <m>Omega</m> load resistance     No aditional load resistor connected   | +|   :::     P13 connect 100Ω load resistance     No additional load resistor connected   | 
-|   :::     P17 connect 50 <m>Omega</m> load resistance     No aditional load resistor connected   | +|   :::     P17 connect 50Ω load resistance     No additional load resistor connected   | 
-|   :::     P16 connect 25 <m>Omega</m> load resistance     No aditional load resistor connected   | +|   :::     P16 connect 25Ω load resistance     No additional load resistor connected   | 
-|   :::     P15 connect 12.5 <m>Omega</m> load resistance     No aditional load resistor connected   | +|   :::     P15 connect 12.5Ω load resistance     No additional load resistor connected   | 
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p13_p18.jpg |}}   || +|   :::        || 
-| Notes    |   **7V max across 25Ω, 12.5Ω resistors will turn on the Over Power LED illuminates as warning.**   || +| Notes    |   **7 V max across 25Ω, 12.5Ω resistors will turn on the Over Power LED - which illuminates as warning.**   || 
- +\\ 
 +The R87 (LOAD CONTROL) potentiometer controls the duty cycle of all load resistors whose jumper is placed in the adjustable position by switching the ground connection. (**YES** this is super weird, but it's convenient, and works much better than you'd think!) Duty cycle is guaranteed to be zero when fully counter-clockwise and 100% when fully clockwise. Thus, the load can be a combination of fixed and variable resistances and the exact duty cycle of the onboard PWM circuit can be measured at P40. The signal at P40 has a 1k impedance and may be overdriven by a 3.3 V logic signal, allowing the load to be stepped.  
 +\\ 
 +\\ 
 +The load PWM frequency is fixed at 200 kHz, approximately 10x the typical operating frequency of most experiments, thus appearing as a steady (DC) load. 
 +\\ 
 +\\ 
 +A 0.1-ohm current sense resistor is in the ground return of the load resistors, allowing the total load current to be easily measured with the meter set to the 200 mV range at either the LOAD turret post (TP25) or the LOAD CURRENT jumper (P39). 
 +\\ 
 +\\ 
 +==== Topology, FET, and Current Sense Selection ==== 
 +The selection between boost or buck topologies is made by jumpers P25, P35, and P37. 
 +\\ 
 +^ ^   FET Selection   ^^   Current Sense Selection   ^^ 
 +^   Jumper      ^   P37   ^^   P35   ^^   P25   ^^ 
 +|   Position     BUCK     BOOST     BUCK     BOOST     HIGH     LOW   | 
 +|   Function     Select buck topology     Select boost topology     Select the proper FET for buck topology     Select the proper FET for boost topology     Used for buck topology     Used for boost topology   | 
 +|   :::        |||||| 
 +| Notes    |   **Proper selection allows complete inductor waveform to be viewed.**   |||||| 
 +\\ 
 +In the boost configuration, P37 does **not** bypass Schottky diode D4; P35 routes the FET driver control to the low-side switch; and P25 selects the high-side current sense amplifier. 
 +\\ 
 +\\ 
 +In the buck configuration, P37 bypasses D4; P35 routes the FET driver control to the high-side switch; and P24 selects the low-side current sense amplifier. 
 +\\ 
 +<WRAP info> 
 +Close inspection of the operation of the circuit will show that, in theory, either current sense amplifier will work for both topologies. Still, the amplifier that is NOT at the switch node is chosen to minimize errors due to common-mode excursion. 
 +</WRAP> 
 +\\ 
 +\\ 
 +==== Mode Selection ==== 
 +The ADALM-SR1 has several operational modes set by the jumpers, as noted below. 
 +\\ 
 +\\ 
 +The MODE jumper selects between peak current mode and duty cycle control: 
 +  * Peak Current - a fixed frequency clock starts the inductor current ramp by turning on a MOSFET switch, and the switch opens when a peak current is reached. 
 +  * Duty Cycle - the duty cycle of the MOSFET switch is controlled directly. 
 +\\ 
 +^ ^   Control Mode Selection   ^^ 
 +^   Jumper      ^   P32   ^^ 
 +|   Position     Peak Current     Duty Cycle   | 
 +|   Function     Start on clock rising edge, stop on peak current     Direct duty cycle control   | 
 +|   :::        || 
 +| Notes    |   **Closed/open-loop determined by Duty Cycle or Current Threshold jumper.**   || 
 +\\ 
 +<WRAP info> 
 +The peak current circuit is always active even in duty-cycle mode, increasing robustness in the event of an output short circuit. 
 +</WRAP> 
 +\\
  
 ==== Duty Cycle Source Selection ==== ==== Duty Cycle Source Selection ====
 +An LTC6992 Pulse-Width Modulator allows the switching MOSFET's duty cycle to be controlled directly, either manually by adjusting the DUTY CYCLE knob or under the control of the error amplifier.
 +\\
 ^ ^   Duty Cycle Source Selection   ^^ ^ ^   Duty Cycle Source Selection   ^^
 ^   Jumper      ^   P23   ^^ ^   Jumper      ^   P23   ^^
 |   Position     Closed-loop     Manual   | |   Position     Closed-loop     Manual   |
 |   Function     Duty controlled by error amplifier     Duty controlled by potentiometer   | |   Function     Duty controlled by error amplifier     Duty controlled by potentiometer   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p23.jpg |}}   || +|   :::        || 
-| Notes    |   **Current Threshold still operational for safetydetermined by Current Threshold Potentiometer.**   || +| Notes    |   **Current Threshold still operational for safetydetermined by Current Threshold Potentiometer.**   || 
 +\\ 
 +\\
  
-==== Control Mode Selection ==== 
-^ ^   Control Mode Selection   ^^ 
-^   Jumper      ^   P32   ^^ 
-|   Position     Peak Current     Duty Cycle   | 
-|   Function     Start on clock rising edge, stop on peak current     Direct duty cycle control   | 
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p32.jpg |}}   || 
-| Notes    |   **Closed/open-loop determined by Duty Cycle or Current Threshold jumper.**   || 
- 
- 
- 
-==== Current Sense Selection ==== 
-^ ^   Current Sense Selection   ^^ 
-^   Jumper      ^   P25   ^^ 
-|   Position     High     Low   | 
-|   Function     Used for boost topology     Used for buck topology   | 
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p25.jpg |}}   || 
-| Notes    |   **Proper selection allows complete inductor waveform to be viewed.**   || 
- 
- 
-==== FET and Current Sense Selection ==== 
-^ ^   FET Selection   ^^   Current Sense Selection   ^^ 
-^   Jumper      ^   P35   ^^   P25   ^^ 
-|   Position     Buck     Boost     High     Low   | 
-|   Function     Select the proper FET for buck topology     Select the proper FET for boost topology     Used for buck topology     Used for boost topology   | 
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p35_p25.jpg |}}   |||| 
-| Notes    |   **Proper selection allows complete inductor waveform to be viewed.**   |||| 
 ==== Current Threshold Source Selection ==== ==== Current Threshold Source Selection ====
 +In peak-current control modes, the peak current can be controlled either manually by adjusting the CURRENT THRESHOLD knob or under the control of the error amplifier. The current threshold is also always active in voltage control modes, maintaining the per-cycle current limit as an added safety and robustness feature.
 +\\
 ^ ^   Current Threshold Source Selection   ^^ ^ ^   Current Threshold Source Selection   ^^
 ^   Jumper      ^   P22   ^^ ^   Jumper      ^   P22   ^^
 |   Position     Manual     Closed-loop   | |   Position     Manual     Closed-loop   |
 |   Function     Threshold controlled by potentiometer     Threshold controlled by error amplifier   | |   Function     Threshold controlled by potentiometer     Threshold controlled by error amplifier   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p22.jpg |}}   ||+|   :::        ||
 | Notes    |   **Set Duty Cycle pot to approx. 50%. (not critical, rising edge controls start of the ramp)**   || | Notes    |   **Set Duty Cycle pot to approx. 50%. (not critical, rising edge controls start of the ramp)**   ||
 +\\
 +\\
 +==== Feedback Selection ====
 +Three options for feedback network are provided, assuming a 1.25 V reference voltage. The 5V option is usually used for buck experiments (input voltage greater than 5 V), and the 12 V option is usually used for boost experiments (input less than 12 V). Footprints for optional 0603-sized resistors are included for user-defined feedback networks selected by the third jumper option.
 +\\
 +^ ^   Feedback Selection   ^^^
 +^   Jumper      ^   P20   ^^^
 +|   Position     5V     12V     ALT   |
 +|   Function     Usually used for buck topology     Usually used for boost topology     Select user-installed feedback resistors   |
 +|   :::        |||
 +\\
 +\\
  
 +==== Signal Measurement and Injection Points ====
 +The ADALM-SR1 provides numerous test points for stimulating (modulating) and measuring the operation of the circuit, such as input and output voltage, inductor current, and output current. Several aspects of the circuit's dynamic response can also be measured:
 +\\
 +  * In open-loop voltage mode, modulate the duty cycle control voltage to characterize the response of the power stage
 +  * In open-loop current mode, modulate the current threshold (ITH) to characterize the response of the power stage
 +  * In any closed-loop mode, modulate the feedback divider to characterize the closed-loop response of the whole circuit.
 +\\
 +Connections are summarized in Figure X below and the following tables.
 +\\
 +{{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_aux_measure_inject.png?direct&1200 |}}
 +\\
  
-==== Measurement Points ==== 
 ^   Measurement Points   ^^^ ^   Measurement Points   ^^^
 ^ ^   Name     Notes   ^ ^ ^   Name     Notes   ^
 |   **TP1**     P_PROT     Overvoltage/overcurrent protected power.   | |   **TP1**     P_PROT     Overvoltage/overcurrent protected power.   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_tp1.jpg |}}   \\   || 
 |   **P1**     SW_NODE_HI     Switch node in buck topology.   | |   **P1**     SW_NODE_HI     Switch node in buck topology.   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p1.jpg |}}   \\   || 
 |   **P4**     SW_NODE_LOW     Switch node in boost topology.   | |   **P4**     SW_NODE_LOW     Switch node in boost topology.   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p4.jpg |}}   \\   || +|   **P2**     IHIGH     Current sense amplifier output, boost configurations (0.1Ω sense R, G=7, 1.429 A/V net output).   | 
-|   **P2**     IHIGH     Current sense amplifier output, boost configurations (0.7A/V).   +|   **P12**     ILOW     Current sense amplifier output, buck configurations (0.1Ω sense R, G=7, 1.429 A/V net output).   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p2.jpg |}}   \\   |+
-|   **P12**     ILOW     Current sense amplifier output, buck configurations (0.7A/V).   +
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p12.jpg |}}   \\   ||+
 |   **P10, P9, TP5, TP7**     V_OUT     Experiment output voltage. P10 can be AC coupled by removing P9.   | |   **P10, P9, TP5, TP7**     V_OUT     Experiment output voltage. P10 can be AC coupled by removing P9.   |
-|   :::      {{ :university:tools:lab_hw:adalm-sr1_p10_p9_tp5_tp7.jpg |}}   \\   || 
 |   **P5**     FB_MEAS     Feedback perturbation measurement (AC coupled).   | |   **P5**     FB_MEAS     Feedback perturbation measurement (AC coupled).   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p5.jpg |}}   \\   || 
 |   **P33**     CLOCK     Master clock, 3.3V logic level.   | |   **P33**     CLOCK     Master clock, 3.3V logic level.   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p33.jpg |}}   \\   || 
 |   **P34**     GATE CONTROL     FET gate control signal, 3.3V logic level.   | |   **P34**     GATE CONTROL     FET gate control signal, 3.3V logic level.   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p34.jpg |}}   \\   || 
  
  
-==== Injection Points ====+
 ^   Injection Points   ^^^ ^   Injection Points   ^^^
 ^ ^   Name     Notes   ^ ^ ^   Name     Notes   ^
-|   **P28**     ITH MOD     Peak current control modulation (0.7A/V). Install P29 to DC couple.   +|   **P28**     ITH MOD     Peak current control modulation (1.429 A/V). Install P29 to DC couple.   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p28_p29.jpg |}}   \\   ||+
 |   **P27**     DUTY CYCLE MOD     Duty Cycle modulation (100%/V). Install P26 to DC couple.   | |   **P27**     DUTY CYCLE MOD     Duty Cycle modulation (100%/V). Install P26 to DC couple.   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p27_p26.jpg |}}   \\   || 
 |   **P7**     FB_MOD     Feedback modulation for loop gain measurements (XXV/V). Install P6 to DC couple.   | |   **P7**     FB_MOD     Feedback modulation for loop gain measurements (XXV/V). Install P6 to DC couple.   |
-|   :::     {{ :university:tools:lab_hw:adalm-sr1_p7_p6.jpg |}}   \\   ||+
 ===== Hardware Setup Procedure ===== ===== Hardware Setup Procedure =====
-Figure 2 shows the ADALM2000 (M2K) connections for measuring the switch node voltage on Channel 1 and ripple current on Channel 2. Connect all 4 of the M2K's ground leads and 1-, 2- leads to the row of 6 ground posts at the top of the board... 
- 
-{{ :university:tools:lab_hw:adalm_buck:adalm-buck_m2k_connections.jpg?direct&600 |}} 
- 
-<WRAP centeralign> Figure 2. ADALM-BUCK - ADALM2000 connections</WRAP> 
  
 +Refer to individual lab exercises for detailed setup information.
  
 ===== Auxiliary Circuit Details ===== ===== Auxiliary Circuit Details =====
-The setup and operation of circuitry associated with the lab exercises is described in detail in the exercises themselves. The ADALM-SR1 includes various auxiliary housekeeping and protection circuits described here.+The setup and operation of circuitry associated with the lab exercises are described in detail in the exercises themselves. The ADALM-SR1 includes various auxiliary housekeeping and protection circuits described here.
  
 \\ \\
- +{{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_aux_circuits.png?direct&1200 |}}
-==== Housekeeping supplies and reference ==== +
-The ADALM-SR1 has two power inputs. The experiment power input is supplied by the user, and the voltage will vary depending on the experiment being run. An additional micro USB connector is the input for a 5V "housekeeping" supply that powers all of the control circuitry, allowing the experiment power to vary over a wide range. An LT3472 boosts / inverts the 5V supply to +15 / -2V, respectively. This provides a high voltage and slightly negative voltage for the LT1995 current sense amplifiers, and a negative supply for the error amplifier. +
- +
-{{ :university:tools:lab_hw:adalm-sr1_housekeeping_supplies.jpg |}}+
 \\ \\
  
- +==== Housekeeping Supplies and Reference ==== 
-An LT1970-1.25 provides an accurate reference for the error amplifier and duty cyclecurrent threshold adjustment potentiometers. +The ADALM-SR1 has two power inputs. The user supplies the experiment power input, and the voltage will vary depending on the experiment being run. An additional micro USB connector is the input for a 5 V "housekeeping" supply that powers all of the control circuitry, allowing the experiment power to vary over a wide range. An LT3472 boosts or inverts the 5 V supply to +15 / -2 V, respectively. This provides a high voltage and slightly negative voltage for the LT1995 current sense amplifiers and a negative supply for the error amplifier. 
- +\\ 
-{{ :university:tools:lab_hw:adalm-sr1_reference.jpg |}}+\\ 
 +An LT1970-1.25 provides an accurate reference for the error amplifier and duty cycle current threshold adjustment potentiometers. 
 +\\
 \\ \\
 ==== Input Overvoltage, Undervoltage, Reverse voltage, and Overcurrent ==== ==== Input Overvoltage, Undervoltage, Reverse voltage, and Overcurrent ====
-An LTC4368 and associated circuitry protects the experiment power input by only turning on when the supply is between 3V and 15V. The circuit is protected from voltages between -40V and +60V. The LTC4368 also functions as a fuse, shutting off the supply if the current exceeds 2A+The Figure below shows an LTspice schematic of the ADALM-SR1's protection circuitry. The simulation file is available at [[https://github.com/mthoren-adi/education_tools/blob/sr1/m2k/ltspice/ol_boost_and_buck/OL_engineer_proofing.asc|OL_engineer_proofing.asc]], and running the simulation in LTspice will exercise some of the various fault conditions. 
- +\\ 
-{{ :university:tools:lab_hw:adalm-sr1_power_input_protection.jpg |}} +{{ :university:tools:lab_hw:adalm_sr1:adalm_sr1_engineer_proofing.png |}} 
 +\\ 
 +An LTC4368 and associated circuitry protects the experiment power input by only turning on when the supply is between 3 V and 15 V. The circuit is protected from voltages between -40 V and +60 V. The LTC4368 also functions as a fuse, shutting off the supply if the current exceeds 2 A
 +\\
 \\ \\
 ==== Output Overvoltage ==== ==== Output Overvoltage ====
-In boost mode, the ADSRALM can produce high voltages under certain conditions: if the duty cycle is high and the load is light, or if feedback is disconnected. An LTC2912 overvoltage / undervoltage supervisor will disable the switching circuitry if the output exceeds 22V. An SMAJ24A, 24-volt TVS diode provides additional protection. +In boost mode, the ADSRALM can produce high voltages under certain conditions: if the duty cycle is high and the load is light, or if feedback is disconnected. An LTC2912 overvoltage / undervoltage supervisor will disable the switching circuitry if the output exceeds 22 V. An SMAJ24A, 24-volt TVS diode provides additional protection. 
- +\\
-{{ :university:tools:lab_hw:adalm-sr1_output_overvoltage.jpg |}} +
 \\ \\
 ==== Inductor, Load Resistor Overtemperature ==== ==== Inductor, Load Resistor Overtemperature ====
 The inductor and onboard load resistors can get warm during certain experiments or if the board is misconfigured. Three temperature sensors measure the inductor temperature and the temperature of the high-dissipation areas of the load resistor bank. If any temperature exceeds 60ºC, switching is disabled for a 1.9 second cool-down period. The inductor and onboard load resistors can get warm during certain experiments or if the board is misconfigured. Three temperature sensors measure the inductor temperature and the temperature of the high-dissipation areas of the load resistor bank. If any temperature exceeds 60ºC, switching is disabled for a 1.9 second cool-down period.
- +\\ 
-The low-resistance loads consist of parallel, single 100Ω, 1/2W resistors An orange LED near the associated jumpers illuminates when the output voltage exceeds 7V as a warning that these must be disconnected. +\\ 
- +The low-resistance loads consist of parallel, single 100 Ω, 1/2 W resistorsAn orange LED near the associated jumpers illuminates when the output voltage exceeds 7 V as a warning that these must be disconnected. 
-The high resistance loads consist of multiples of two 100-ohm, 1/2W resistors in series, which will handle voltages up to 14V. A temperature sensor is still included in case the output voltage exceeds 14V or if the experiment is left running for an extended period of time. +\\ 
- +\\ 
-{{ :university:tools:lab_hw:adalm-sr1_overtemperature.jpg |}} +The high resistance loads consist of multiples of two 100-ohm, 1/4 W resistors in series, which will handle voltages up to 14 V. A temperature sensor is still included in case the output voltage exceeds 14 V or if the experiment is left running for an extended period of time.
 \\ \\
  
Line 200: Line 234:
  
 <WRAP round 80% download> <WRAP round 80% download>
 +[[adi>media/en/evaluation-documentation/evaluation-design-files/adalm-sr1-designsupport.zip|ADALM-SR1 Design & Integration Files]]
 +  * Schematics
 +  * PCB Layout
 +  * Bill of Materials
 +  * Allegro Project
 +</WRAP>
  
-SRALM-EBZ  Design & Integration Files +===== Corner Case Test Report =====
-(PLACEHOLDERS) +
-  * {{ :resources:eval:user-guides:circuits-from-the-lab:adalm-buck-ardz:02-056851-01-b-sch.pdf | Schematics}} +
-  * {{ :resources:eval:user-guides:circuits-from-the-lab:adalm-buck-ardz:05-056851-01-b-bom.xlsx | Bill of Materials}} +
-  * {{ :resources:eval:user-guides:circuits-from-the-lab:adalm-buck-ardz:01-056851-01b-asm.zip | Assembly Files}} +
-  * {{ :resources:eval:user-guides:circuits-from-the-lab:adalm-buck-ardz:09-056851-01b-fab.zip | Gerber Files}} +
  
 +<WRAP round 80% download>
 +This is an informal internal test report intended to exercise operating conditions outside those detailed in the experiments. This may be useful for those developing additional exercises.\\
 +  * {{ :university:tools:lab_hw:adalm_sr1:adalm-sr1_test_report.pptx | ADALM-SR1 Test Report}}
 </WRAP> </WRAP>
  
 +<WRAP important>This page is for the released revision of the ADALM-SR1. Documentation for the pilot run (rev A) is here for reference: [[university:tools:lab_hw:adalm-sr1_rev_a|ADALM-SR1 hardware]]</WRAP>
 //End of Document// //End of Document//
university/tools/lab_hw/adalm-sr1.1580122425.txt.gz · Last modified: 27 Jan 2020 11:53 by Mihai Ionut Suciu