Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Last revision Both sides next revision
university:courses:electronics:lp_hp_filters [08 Aug 2019 12:46]
Pop Andreea created
university:courses:electronics:lp_hp_filters [25 Jun 2020 22:07]
external edit
Line 1: Line 1:
 ======Activity:​ Low Pass and High Pass Filters====== ======Activity:​ Low Pass and High Pass Filters======
 +
 +
  
 =====Objective:​===== =====Objective:​=====
  
 The objective of this Lab activity is to study the characteristics of passive filters by obtaining the frequency response of low pass RC filter and high pass RL filter. The objective of this Lab activity is to study the characteristics of passive filters by obtaining the frequency response of low pass RC filter and high pass RL filter.
 +
 +
 +
 =====Background:​ ===== =====Background:​ =====
  
 The impedance of an inductor is proportional to frequency and the impedance of a capacitor is inversely proportional to frequency. These characteristics can be used to select or reject certain frequencies of an input signal. This selection and rejection of frequencies is called filtering, and a circuit which does this is called a filter. ​ The impedance of an inductor is proportional to frequency and the impedance of a capacitor is inversely proportional to frequency. These characteristics can be used to select or reject certain frequencies of an input signal. This selection and rejection of frequencies is called filtering, and a circuit which does this is called a filter. ​
  
-{{ :​university:​courses:​alm1k:​circuits1:​alm-cir-lab8-fig1.png?​500 |}}+{{ :​university:​courses:​alm1k:​circuits1:​alm-cir-lab8-fig1.png?​400 |}}
  
 <WRAP centeralign>​Figure 1: Low Pass RC filter.</​WRAP>​ <WRAP centeralign>​Figure 1: Low Pass RC filter.</​WRAP>​
  
-{{ :​university:​courses:​alm1k:​circuits1:​alm-cir-lab8-fig2.png?​500 |}}+{{ :​university:​courses:​alm1k:​circuits1:​alm-cir-lab8-fig2.png?​400 |}}
  
 <WRAP centeralign>​Figure 2: High Pass RL filter.</​WRAP>​ <WRAP centeralign>​Figure 2: High Pass RL filter.</​WRAP>​
Line 38: Line 43:
 ADALM2000 Active Learning Module\\ ADALM2000 Active Learning Module\\
 Solder-less breadboard, and jumper wire kit\\ Solder-less breadboard, and jumper wire kit\\
-ADALM1000 hardware module\\ 
 1 1 KΩ resistor\\ 1 1 KΩ resistor\\
 1 1 µF capacitor\\ 1 1 µF capacitor\\
-12 mH inductor+10 mH inductor 
 +=====A. RC Low-pass filter===== 
 +====Hardware setup:​==== 
 +On the solderless breadboard build the circuit presented in Figure 4.  
 + 
 +{{ :​university:​courses:​electronics:​lpf_rc.png?​400 |}} 
 + 
 +<WRAP centeralign>​Figure 4: RC low pass filter ​    </​WRAP>​ 
 + 
 +{{ :​university:​courses:​electronics:​rc_lpf_bb.png?​900 |}} 
 + 
 +<WRAP centeralign>​Figure 5: Breadboard connections of RC low pass filter</​WRAP>​ 
 + 
 + 
 +====Procedure:​==== 
 +To analyze the filter transfer function you must use the Network Analyzer tool. Compute the cutoff frequency of the filter using equation (1). According to this you will set the start and stop frequencies of the logarithmic sweep. In this case the cutoff frequency is 160 Hz. In the network analyzer set the start frequency at 1 Hz and the stop frequency at 10 KHz. Set the minimum phase at -90 the maximum phase at 90. Magnitude axis can be set from -50 dB to 10dB. In Figure 6 is presented the transfer function of the filter obtained by running the network analyzer. 
 + 
 +{{ :​university:​courses:​electronics:​lpf_rc_network_analyzer.png?​900 |}} 
 + 
 +<WRAP centeralign>​Figure 6:RC low pass filter transfer function</​WRAP>​ 
 + 
 + 
 +Further you can use the signal generator and the oscilloscope to observe how the filter affects the input signal. On the channel 1 of the signal generator generate a sine waveform with a frequency lower than the cutoff frequency, for example 50 Hz.  
 + 
 +{{ :​university:​courses:​electronics:​lpf_50hz.png?​900 |}} 
 + 
 +<WRAP centeralign>​Figure 7: Input and output signals of RC low pass filter for a frequency lower than the cutoff frequency</​WRAP>​ 
 + 
 +If the frequency of the input signal increases to a value greater than the cutoff frequency, for example 500Hz in this case, you will see an attenuation and a phase difference on the output signal according to the filter transfer function. 
 + 
 +{{ :​university:​courses:​electronics:​lpf_500hz.png?​900 |}} 
 + 
 +<WRAP centeralign>​Figure 8: Input and output signals of RC low pass filter for a frequency higher than the cutoff frequency</​WRAP>​ 
 + 
 +=====B. RL High-pass filter===== 
 + 
 +====Hardware setup:​==== 
 +On the solderless breadboard build the circuit presented in Figure 9.  
 + 
 +{{ :​university:​courses:​electronics:​hpf_rl.png?​400 |}} 
 + 
 +<WRAP centeralign>​Figure 9: RL high pass filter ​    </​WRAP>​ 
 + 
 +{{ :​university:​courses:​electronics:​rl_hpf_bb.png?​900 |}} 
 + 
 +<WRAP centeralign>​Figure 10: Breadboard connections of RL high pass filter</​WRAP>​ 
 + 
 + 
 +====Procedure:​==== 
 +The procedure is similar to the LPF case. After computing the cutoff frequency using equation (2) set the sweep parameters accordingly. The logarithmic sweep can start in this case at 1 KHz and stop at 100kHz. Phase and magnitude axes can be kept as the same values as in the LPF case. Run the network analyzer to obtain the transfer function as presented in Figure 11. 
 + 
 +{{ :​university:​courses:​electronics:​hfp_rl_network_analyzer.png?​900 |}} 
 + 
 +<WRAP centeralign>​Figure 11:  RL high pass filter transfer function</​WRAP>​ 
 + 
 +As in the previous case, generate a sinusoidal waveform on the channel 1 of the signal generator. Observe how at  frequency values lower than the cutoff frequency the output signal is attenuated. 
 + 
 +{{ :​university:​courses:​electronics:​hpf_1khz.png?​900 |}} 
 + 
 +<WRAP centeralign>​Figure 12:  Input and output signals of RL high pass filter for a frequency lower than the cutoff frequency</​WRAP>​ 
 + 
 +If the frequency is higher than the cutoff frequency, the signal is in the pass-band of the filter and the attenuation tends to be 0dB. 
 + 
 +{{ :​university:​courses:​electronics:​hpf_50khz.png?​900 |}} 
 + 
 +<WRAP centeralign>​Figure 12: Input and output signals of RL high pass filter for a frequency higher than the cutoff frequency</​WRAP>​ 
  
-=====Hardware setup:===== 
-=====Procedure:​===== 
 =====Questions:​===== =====Questions:​=====
 Calculate the Cut-off frequencies for the RC low pass and RL high pass filter using equations (1) and (2). Compare the computed theoretical values to the ones obtained from the experimental measurements and provide a suitable explanation for any differences. ​ Calculate the Cut-off frequencies for the RC low pass and RL high pass filter using equations (1) and (2). Compare the computed theoretical values to the ones obtained from the experimental measurements and provide a suitable explanation for any differences. ​
Line 50: Line 118:
 <WRAP round download>​ <WRAP round download>​
 **Lab Resources:​** **Lab Resources:​**
-  * Fritzing files: +  * Fritzing files: ​[[downgit>​education_tools/​tree/​master/​m2k/​fritzing/​lpf_hpf_bb | lpf_hpf_bb]] 
-  * LTSpice files:+  * LTSpice files: ​[[downgit>​education_tools/​tree/​master/​m2k/​ltspice/​lpf_hpf_ltspice | lpf_hpf_ltspice]]
 </​WRAP>​ </​WRAP>​
  
university/courses/electronics/lp_hp_filters.txt · Last modified: 03 Nov 2021 20:49 by Doug Mercer