Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
university:courses:electronics:electronics-lab-pulse-width-modulation [15 Jul 2019 11:42]
Pop Andreea Circuit schematics have been replaced
university:courses:electronics:electronics-lab-pulse-width-modulation [27 Jan 2021 22:36]
Robin Getz use wp> interwiki links
Line 57: Line 57:
 ==== Procedure ==== ==== Procedure ====
  
-Use the first waveform generator as the carrier signal providing a 4V amplitude, 2.5V offset, 1 kHz triangle wave excitation to the circuit. Use the second waveform generator as the modulation signal with 3V amplitude, 2.5V offset, 50Hz sine wave.+Use the first waveform generator as the carrier signal providing a 4V amplitude ​peak-to-peak, 2.5V offset, 1 kHz triangle wave excitation to the circuit. Use the second waveform generator as the modulation signal with 3V amplitude ​peak-to-peak, 2.5V offset, 50Hz sine wave.
  
 Supply the op amp with +5V from the power supply. Configure the scope so that the input signal is displayed on channel 1 and the output signal is displayed on channel 2 . Supply the op amp with +5V from the power supply. Configure the scope so that the input signal is displayed on channel 1 and the output signal is displayed on channel 2 .
Line 103: Line 103:
 ==== Procedure ==== ==== Procedure ====
  
-Use the first waveform generator as source Vin to provide a 5V amplitude, 1 kHz triangle wave excitation to the circuit. Use the second waveform generator as constant voltage source with 5V amplitude.+Use the first waveform generator as source Vin to provide a 5V amplitude ​peak-to-peak, 1 kHz triangle wave excitation to the circuit. Use the second waveform generator as constant voltage source with 5V amplitude ​peak-to-peak.
 Supply the op amp to +5V from the power supply. Configure the scope so that the input signal is displayed on channel 1 and the output signal is displayed on channel 2. Supply the op amp to +5V from the power supply. Configure the scope so that the input signal is displayed on channel 1 and the output signal is displayed on channel 2.
  
Line 189: Line 189:
 <WRAP round download>​ <WRAP round download>​
 **Lab Resources:​** **Lab Resources:​**
-  * Fritzing files: [[ https://​minhaskamal.github.io/​DownGit/#/​home?​url=https://​github.com/​analogdevicesinc/​education_tools/​tree/​master/​m2k/​fritzing/​pwm_lab_bb | pwm_lab_bb]] +  * Fritzing files: [[downgit>education_tools/​tree/​master/​m2k/​fritzing/​pwm_lab_bb | pwm_lab_bb]] 
-  * LTspice files: [[ https://​minhaskamal.github.io/​DownGit/#/​home?​url=https://​github.com/​analogdevicesinc/​education_tools/​tree/​master/​m2k/​ltspice/​pwm_lab_ltspice | pwm_lab_ltspice]]+  * LTspice files: [[downgit>education_tools/​tree/​master/​m2k/​ltspice/​pwm_lab_ltspice | pwm_lab_ltspice]]
 </​WRAP>​ </​WRAP>​
 ===== Further Reading ===== ===== Further Reading =====
  
 Some additional resources: Some additional resources:
-  * [[https://​en.wikipedia.org/​wiki/​Pulse-width_modulation|Pulse-width modulation]]+  * [[wp>Pulse-width_modulation|Pulse-width modulation]]
   * [[university:​courses:​alm1k:​alm-lab-pwm|Activity:​ Pulse Width Modulation]]   * [[university:​courses:​alm1k:​alm-lab-pwm|Activity:​ Pulse Width Modulation]]
-  * [[http://​www.analog.com/​en/​analog-dialogue/​articles/​how-to-control-fan-speed.html|Why and How to Control Fan Speed for Cooling Electronic Equipment]]+  * [[adi>en/​analog-dialogue/​articles/​how-to-control-fan-speed.html|Why and How to Control Fan Speed for Cooling Electronic Equipment]]
  
 **Return to Lab Activity [[university:​courses:​electronics:​labs|Table of Contents]]** **Return to Lab Activity [[university:​courses:​electronics:​labs|Table of Contents]]**
  
university/courses/electronics/electronics-lab-pulse-width-modulation.txt · Last modified: 27 Jan 2021 22:36 by Robin Getz