Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revisionBoth sides next revision
university:courses:electronics:electronics-lab-4m [12 Jul 2019 13:01] – [Activity 4M. NMOS FET characteristic curves] Pop Andreeauniversity:courses:electronics:electronics-lab-4m [23 Aug 2019 12:39] Antoniu Miclaus
Line 27: Line 27:
 <WRAP centeralign> Figure 2 NMOS I<sub>D</sub> vs V<sub>DS</sub> breadboard circuit </WRAP> <WRAP centeralign> Figure 2 NMOS I<sub>D</sub> vs V<sub>DS</sub> breadboard circuit </WRAP>
  
-The arbitrary waveform generator should be configured for a 100 Hz triangle wave with 2.5 volt amplitude and 1.25 volt offset. The differential scope channel 2 (2+/-) measures the current in the resistor (and in the transistor). Scope channel 1 should be connected to display the output of the waveform generator. The current flowing through the transistor is the voltage difference 2+ and 2- divided by the resistor value (100Ω).+The arbitrary waveform generator should be configured for a 100 Hz triangle wave with 2.5 volt amplitude peak-to-peak and 1.25 volt offset. The differential scope channel 2 (2+/-) measures the current in the resistor (and in the transistor). Scope channel 1 should be connected to display the output of the waveform generator. The current flowing through the transistor is the voltage difference 2+ and 2- divided by the resistor value (100Ω).
  
  
Line 69: Line 69:
 The setup is the same as the previous experiment except now Scope channel 1 is set to display the transistor V<sub>DS</sub>. The drain voltage is swept using a 3 volt peak to peak ramp with an offset equal to 1.5V from the arbitrary waveform generator. V<sub>DS</sub> is measured by single ended scope input 1+. The drain current is measured by differential scope input 2+/- across the 100Ω resistor R<sub>1</sub>. The setup is the same as the previous experiment except now Scope channel 1 is set to display the transistor V<sub>DS</sub>. The drain voltage is swept using a 3 volt peak to peak ramp with an offset equal to 1.5V from the arbitrary waveform generator. V<sub>DS</sub> is measured by single ended scope input 1+. The drain current is measured by differential scope input 2+/- across the 100Ω resistor R<sub>1</sub>.
    
-A stair-step waveform will be needed to drive the gate of the transistor. Using the buffer in the Scopy Signal Generator tool, construct a stair-step waveform with 5 levels on channel 2 (W2). Load the following csv file (extract from archive): {{:university:courses:electronics:stair-step.zip|}}. Set the amplitude to 3V and sampleRate to 100Hz.+A stair-step waveform will be needed to drive the gate of the transistor. Using the buffer in the Scopy Signal Generator tool, construct a stair-step waveform with 5 levels on channel 2 (W2). Load the following csv file (extract from archive): {{:university:courses:electronics:stair-step.zip|}}. Set the amplitude to 3V peak-to-peak and sampleRate to 100Hz.
  
 ===== Procedure: ===== ===== Procedure: =====
university/courses/electronics/electronics-lab-4m.txt · Last modified: 02 Feb 2023 20:41 by Doug Mercer