Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
university:courses:alm1k:alm-lab-16 [27 Jul 2018 15:19]
Doug Mercer [Materials:]
university:courses:alm1k:alm-lab-16 [05 Nov 2021 15:21] (current)
Doug Mercer [Activity: Capacitor Based DC-DC Converters]
Line 1: Line 1:
-======Activity ​16: Capacitor Based DC-DC Converters======+======Activity:​ Capacitor Based DC-DC Converters ​- ADALM1000======
  
 =====Objective:​===== =====Objective:​=====
Line 11: Line 11:
 Scope traces are similarly referred to by channel and voltage / current. Such as CA-V , CB-V for the voltage waveforms and CA-I , CB-I for the current waveforms. Scope traces are similarly referred to by channel and voltage / current. Such as CA-V , CB-V for the voltage waveforms and CA-I , CB-I for the current waveforms.
  
-The circuits used in this Lab activity while generally low current can produce voltages beyond the 0 to 5 V analog input range of the ALM1000. Input voltage divider techniques as discussed in the document on ALM1000 analog inputs will be required. Refer to the document and construct and use input dividers before preforming any of these experiments with the ALM1000.+The circuits used in this Lab activity while generally low current can produce voltages beyond the 0 to 5 V analog input range of the ALM1000. ​[[university:​courses:​alm1k:​circuits1:​alm-measure-outside-0-5-range|Input voltage divider techniques]] as discussed in the document on ALM1000 analog inputs will be required. Refer to the document and construct and use input dividers before preforming any of these experiments with the ALM1000.
  
 =====Concept:​===== =====Concept:​=====
Line 79: Line 79:
 ====Hardware Setup:==== ====Hardware Setup:====
  
-The digital pulse source ( details below ) output ​should generate a 50% duty cycle square wave at least 20 KHz output frequency. The input of scope channel ​CA-V with an external resistor divider is used to measure the waveform seen at the drain of M<​sub>​1</​sub>​ and the second scope channel CB-V with an external resistor divider can be used to measure the waveform seen at the drain of M<​sub>​2</​sub>​.+The V<​sub>​Clock</​sub>​ pulse can be supplied from the Channel A output or the digital pulse source ​circuit ​(details below in figure 8and should generate a 50% duty cycle square wave with at least 20 KHz output frequency. The input of scope channel ​CB-V with the external resistor divider is used to measure the waveform seen at the drain of M<​sub>​1</​sub>​ and to measure the waveform seen at the drain of M<​sub>​2</​sub> ​and to measure the V<​sub>​Boost</​sub>​ output voltage.
  
 ====Procedure:​==== ====Procedure:​====
Line 103: Line 103:
 ====Directions:​==== ====Directions:​====
  
-The breadboard connections for another version are as shown in figure 6 below. A second ​package of CMOS inverters is used for the upper set of switches (INV3 and INV4) rather than the discrete FETs and diodes. The ground connection of the second ​74HC04 is connected to the V<​sub>​IN</​sub> ​node and the supply connection at pin 14 becomes the V<​sub>​Boost</​sub>​ node. The DMM should be connected to measure the voltage at V<​sub>​Boost</​sub>​. The +5V bench power supply should be connected to the V<​sub>​IN</​sub>​ node. The digital pulse source output drives the input of the first Inverter ​gate at pin 1.+The breadboard connections for another version are as shown in figure 6 below. A one package of CMOS inverters is used for the upper set of switches (INV1 and INV2) rather than the discrete FETs and diodes. The ground connection of the 74HC04 ​at pin 7 is connected to the VIN node and the supply connection at pin 14 becomes the V<​sub>​Boost</​sub>​ node. The voltage divider input should be connected to measure the voltage at V<​sub>​Boost</​sub>​. The +5V power supply should be connected to the V<​sub>​IN</​sub>​ node. The LT1054 is used as both the clock digital pulse source ​and first driver ​output ​for capacitor C<​sub>​1</​sub>​ and drives the input of the Inverter at the gates of NMOS M<​sub>​1</​sub>​ and PMOS M<​sub>​2</​sub>​.
  
 {{ :​university:​courses:​alm1k:​alm-lab16_f6.png?​550 |}} {{ :​university:​courses:​alm1k:​alm-lab16_f6.png?​550 |}}
Line 109: Line 109:
 <WRAP centeralign>​Figure 6 All CMOS Inverter configuration</​WRAP>​ <WRAP centeralign>​Figure 6 All CMOS Inverter configuration</​WRAP>​
  
-Figure 7 shows an inverting DC-DC configuration that produces V<​sub>​Boost</​sub>​ equal to –V<​sub>​IN</​sub>​. The second ​74HC04 is connected below ground as shown to produce a V<​sub>​Boost</​sub>​ that is equal to –V<​sub>​IN</​sub>​.+Figure 7 shows an inverting DC-DC configuration that produces V<​sub>​Boost</​sub>​ equal to –V<​sub>​IN</​sub>​. The 74HC04 is connected below ground as shown to produce a V<​sub>​Boost</​sub>​ that is equal to –V<​sub>​IN</​sub>​.
  
 {{ :​university:​courses:​alm1k:​alm-lab16_f7.png?​550 |}} {{ :​university:​courses:​alm1k:​alm-lab16_f7.png?​550 |}}
Line 129: Line 129:
 **For further reading:** **For further reading:**
  
 +[[adi>​en/​analog-dialogue/​articles/​the-interleaved-inverting-charge-pump-part-1.html|The Interleaved Inverting Charge Pump—Part 1: A New Topology for Low Noise Negative Voltage Supplies]]\\
 http://​en.wikipedia.org/​wiki/​DC-to-DC_converter\\ http://​en.wikipedia.org/​wiki/​DC-to-DC_converter\\
 http://​en.wikipedia.org/​wiki/​Charge_pump\\ http://​en.wikipedia.org/​wiki/​Charge_pump\\
-http://​www.analog.com/​static/​imported-files/​data_sheets/​ADM660_8660.pdf+[[adi>static/​imported-files/​data_sheets/​ADM660_8660.pdf|ADM660,​8660 Data Sheet]]
  
 ====Appendix:​==== ====Appendix:​====
university/courses/alm1k/alm-lab-16.1532697587.txt.gz · Last modified: 27 Jul 2018 15:19 by Doug Mercer