Wiki

This version (03 Jan 2021 21:47) was approved by Robin Getz.The Previously approved version (16 Jun 2020 13:52) is available.Diff

AD5592R/AD5593R Mbed Example

Introduction

The AD5592R/ AD5593R offer 8-Channel, 12-Bit, configurable ADC/DAC with on-chip reference and either SPI (AD5592R) or I2C interfaces (AD5593R). This page gives an overview of using the AD5592R/AD5593R firmware example with SDP-K1 EVAL board. The firmware example comprises 3 layers of software (from top to bottom): Console Application Layer, Device No-OS Layer and Platform Drivers (Mbed-OS) layer.

The application layer uses the ADI Console Libraries to create console based User Interactive (UI). The middle layer of No-OS device library have device specific APIs to interface with AD5592R/93R devices. These APIs allows direct access to device register map in order to read/write device registers. The bottom layer of Platform Drivers is responsible for Low Level Interface. The platform drivers uses mbed-os libraries to access low level peripheral (like GPIOs, SPI, I2C, etc). The devices from AD5592R/AD5593R family use SPI and I2C communication interfaces respectively.

The Mbed Platform simplifies the overall software development process by providing the low level driver support. This reduces the hardware dependency as any Mbed enabled board can be used with same firmware with little modifications (changing a pin mapping).

Interface Diagram

The EVAL-AD5592R is connected to SDP-K1 through the on-board default 120-pin SDP connector. Meanwhile, the EVAL-AD5593R is connected using the K1's Arduino Header and jumper cables.

Both evaluation boards have 8 I/O pins available on the SMB connectors - I/O 0-7. These connectors are analog inputs or outputs depending on whether the I/Ox pin is configured as ADCs or DACs, or as digital inputs or outputs if the I/Ox pin is configured as a GPIO

The SDP-K1 is connected to PC through USB cable. The firmware can be loaded into SDP-K1 board through this USB interface from PC. The SDP-K1 acts as a Serial Device and firmware loaded into it interacts with any serial terminal (like Teraterm, Putty, Coolterm, etc) by configuring terminal for proper serial settings (COM Port, Baud Rate, etc).

Power Supply and USB Connection

 AD5592R Connected to SDP-K1 using 120-Pin SDP connector

 AD5593R connected to SDP-K1 using jumper cables

The AD5592R can be powered using the 3.3V supply from the SDP-K1 provided, on the evaluation board, the link LK1 is set to B and LK11 is set to A. The AD5593R can be powered by using the 5V supply from the Arduino header on the SDP-K1 and connecting them to J2 on the EVAL-AD5593R. LK11 should be set to C. This configuration can be seen in the picture above. To make use of the external 5V power supply and 2.5V reference supply integrated onto the evaluation board the EVAL-AD5592R/93R require an external 6V power supply which should be connected to J3. More details regarding setting up power supplies and other setup conditions can be found in the evaluation board user guides.

SDP-K1 is powered through USB connection to PC. SDP-K1 acts as a Serial device when connected to PC, which creates a COM Port to connect to Serial Terminals like Teraterm, Putty, etc. The COM port assigned to a device can be seen through the device manager for windows based OS.

AD5592R Mbed Firmware

Downloads

Latest firmware (Use below link):

Quick Start

If you have some familiarity with the Mbed platform, the following is a basic list of steps required to start running the code, see below for more detail:

  • Connect the AD5592R/AD55593R EVAL-board to the SDP-K1 controller board.
  • Connect the SDP-K1 controller board to your computer over USB.
  • Go to the link of the code provided above in the 'Downloads' section and import code into Mbed online compiler.
  • Ensure SDP-K1 controller board is selected (top right of online-compiler page).
  • Compile the code.
  • After a successful compile a binary will be downloaded to your computer - store this on your drive.
  • Drag and drop this binary to the USB drive hosted by your controller board.
  • Start up a serial terminal emulator (e.g. Tera Term)
  • Find the com-port your controller board is connected on and select it.
  • Set the baud-rate for 115200
  • Reset the controller board and connect.
  • Use the menu provided over the terminal window to access the evaluation board.
Selecting between the AD5592R and AD5593R is done in app_config.h file by commenting or uncommenting ID_AD5592R/ID_AD5593R as the ACTIVE_DEVICE
If the AD5592R/93R is not provided with an external voltage reference, or the on-board voltage reference is not powered, enable the internal reference under [s] General Settings

Using the Firmware

The AD5592R/93R firmware example is configured to have following serial settings:

* Baud rate: 115200 * Data bits: 8-bits * Parity: None * Stop bits: 1

Configure your serial terminal ( Tera Term) for below settings:

The AD5592R Main Menu looks like below (with Tera Term):

The firmware is designed to be intuitive to use, and requires little explanation, simply enter the letter corresponding to the required command and follow the on-screen prompts.

The console menu application provides the following main features:

  1. Configure each of the 8 I/O channels as ADCs, DACs, ADCs and DACs, GPI or GPO.
  2. Enable/Disable general settings such as the Pre-charge buffer or change the ADC/DAC Gain.
  3. Write voltage values to channels configured as DACs.
  4. Read values in a conversion sequence from channels set as ADCs and included in a conversion sequence.
  5. Read status of channels set as GPIO Inputs and toggle status of channels set as GPIO Outputs.
  6. Perform software reset.
  7. Read die temperature.
It is hoped that the most common functions of the AD5592R and AD5593R devices are coded, but it's likely that some special functionality is not implemented. Feel free to consult Analog Devices Engineer-Zone for feature requests, feedback, bug-reports etc.
resources/tools-software/product-support-software/ad5592r_mbed_example.txt · Last modified: 03 Jan 2021 21:46 by Robin Getz