The most recent version of this page is a draft.DiffThis version (25 May 2023 12:06) was approved by Vasileios Bimpikas.The Previously approved version (24 May 2023 10:54) is available.Diff

This is an old revision of the document!

Yocto Linux 3.0.0 Quickstart Guide for ADSP-SC573-EZKIT)

The following instructions are for the ADSP-SC573-EZKIT development board. For instructions for other processors and development boards please refer to Linux for ADSP-SC5xx Processors 3.0.0

Setting Up Your Host PC

The build system is currently supported on host PCs running Ubuntu 20.04 LTS 64-bit.

Installing Required Packages

In order to build and deploy Linux to your ADSP-SC573-EZKIT development board you will need to install the following packages on your host PC.

$ sudo apt-get update
$ sudo apt-get install -y gawk wget git-core diffstat unzip texinfo gcc-multilib build-essential chrpath socat libsdl1.2-dev xterm u-boot-tools openssl curl tftpd-hpa python3 zstd liblz4-tool

Configuring TFTP Service

A TFTP server on the host is used to transfer images to the development board. Install and configure.

$ sudo vi /etc/default/tftpd-hpa
#Replace the existing file with the following
#End of File
$ sudo mkdir /tftpboot
$ sudo chmod 777 /tftpboot
$ sudo service tftpd-hpa restart

Configure Minicom

In order to communicate with the U-Boot bootloader, a UART connection must be made between the host PC and the development board. It is recommended that you use minicom to do this. Minicom must be configured to connect to U-Boot correctly.

On the host PC open a terminal and execute the following commands:

$ sudo apt-get install -y minicom
$ sudo minicom -s
            | Filenames and paths      |
            | File transfer protocols  |
            | Serial port setup        |
            | Modem and dialing        |
            | Screen and keyboard      |
            | Save setup as dfl        |
            | Save setup as..          |
            | Exit                     |
            | Exit from Minicom        |
# Select Serial port setup
     Set Serial Device to /dev/ttyUSB0
     Set Bps/Par/Bits to 115200 8N1
     Set Hardware Flow Control to No
     Close the Serial port setup option by press Esc
 Select Save setup as dfl
 Select Exit
/dev/ttyUSB0 might not correspond to the serial port of the board on every system. You can determine which /dev entry your board uses by running ls -l /dev/ttyUSB* twice, once when the serial port of the board is plugged in, and once when it isn't.

Installing the Sources

The example is fully contained in the Analog Devices Yocto Linux github repositories.

To install the sources: 

$ mkdir ~/griffin
$ cd ~/griffin
$ mkdir bin
$ curl > ./bin/repo
$ chmod a+x ./bin/repo
$ ./bin/repo init \
   -u \
   -b release/yocto-3.0.0 \
   -m release-yocto-3.0.0.xml
$ ./bin/repo sync

Building the Image

Preparing the buildtool

Yocto requires the environment to be configured before building is possible.  A setup-environment script in the griffin folder contains all the required environment settings for your build target. Source the setup script for your board:

$ source setup-environment -m adsp-sc573-ezkit

Sourcing the script will configure your build environment and create a build folder along with a local build configuration file.  See the Yocto Manual for further details.

Note that the build environment needs to be sourced once only before building.  If later working in a different terminal the setup-environment script should be sourced again.  If sourcing the setup-environment script is done without specifying the machine Yocto will reuse the previous configuration settings and retain any changes made to the files in the conf folder.

Building the example

You can build three different versions of the root filesystem; tiny, minimal and full. To build the example images invoke bitbake from within the build directory created previously.

$ bitbake adsp-sc5xx-tiny
$ bitbake adsp-sc5xx-minimal
$ bitbake adsp-sc5xx-full

When the build completes you will see a warning that the ELF binary has relocations in .text. It is OK to ignore this warning

Building a Linux distribution with Yocto is a significantly demanding process, both in CPU and network usage. A full build from scratch is estimated to take around 170 minutes for an 11th Gen Intel Core i5-11500T with 16 GB of RAM and a stable, fast Internet connection. This estimate can go up significantly for a poorer Internet connection or CPU resources, so set aside plenty of time for a clean build.

Building the SDK

The SDK will provide you with the cross toolchain needed to develop application for the target board, alongside various miscellaneous tools. Notably, it will provide you with OpenOCD and GDB, which you can use to run and flash U-Boot on the board.

The SDK can be built for the adsp-sc5xx-minimal image or the adsp-sc5xx-full image. To build the SDK for the adsp-sc5xx-minimal image invoke bitbake from within the build directory created previously.

$ bitbake adsp-sc5xx-minimal -c populate_sdk

or for the adsp-sc5xx-full image

$ bitbake adsp-sc5xx-full -c populate_sdk

When the build has completed you will find a set of files in the <BUILD_DIR>/tmp/deploy/sdk directory. For example, the minimal image on SC573:

$ ls tmp/deploy/sdk

The is a self-extracting archive containing the SDK.

Installing the SDK

Invoke the self-extracting archive. It will default to installing to /opt/adi-distro/3.0.0 but gives you the option to select your own install folder during the installation. For the minimal image on SC573

$ ./
Analog Devices Inc Reference Distro (glibc) SDK installer version 3.0.0
Enter target directory for SDK (default: /opt/adi-distro-glibc/3.0.0):
You are about to install the SDK to "/opt/adi-distro-glibc/3.0.0". Proceed [Y/n]? y
Extracting SDK................................................................................................................done
Setting it up...done
SDK has been successfully set up and is ready to be used.
Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.
 $ . /opt/adi-distro-glibc/3.0.0/environment-setup-cortexa5t2hf-neon-adi_glibc-linux-gnueabi

Your SDK is now installed.

Running U-Boot on the Board for the first time

It's always good practice to erase the contents of /tftpboot/ before running and/or flashing a new build of U-Boot or Linux. You can do so by executing rm /tftpboot/* before proceeding

Copy the U-Boot binary & loader files to the tftp directory:

$ cp tmp/deploy/images/adsp-sc573-ezkit/u-boot-spl-sc573-ezkit.elf /tftpboot/ 
$ cp tmp/deploy/images/adsp-sc573-ezkit/u-boot-proper-sc573-ezkit.elf /tftpboot/ 
$ cp tmp/deploy/images/adsp-sc573-ezkit/stage1-boot.ldr /tftpboot/ 
$ cp tmp/deploy/images/adsp-sc573-ezkit/stage2-boot.ldr /tftpboot/ 

Before installing the software on to the development board, ensure that the following cables are connected:

  • Board connected to network via ethernet cable using J13 connector.
  • Board connected to host PC using USB micro cable, connected to USB/UART port on the development board
  • Board connected to the ICE 1000 or ICE 2000 via the DEBUG port on the board
  • ICE is also connected to host PC via USB mini cable

  • The BOOT MODE selector on the EV-SC573-SOM board should be turned to “0”.

The console output from U-Boot and later on Linux will appear on the USB serial port configured in minicom earlier so open up minicom.

Terminal1: minicom
$ sudo minicom 

In a separate console launch OpenOCD and connect to the development board.

Terminal2: OpenOCD
$ sdk_usr=/opt/adi-distro-glibc/3.0.0/sysroots/x86_64-adi_glibc_sdk-linux/usr/
$ $sdk_usr/bin/openocd -f $sdk_usr/share/openocd/scripts/interface/<ICE>.cfg -f $sdk_usr/share/openocd/scripts/target/adspsc57x.cfg

Where <ICE> should be replaced with ice1000 or ice2000 depending on your hardware. When successful you should see a message similar to the console output below

Open On-Chip Debugger (PKGVERSION)  OpenOCD 0.10.0-g40378454d (2023-04-05-10:35)
Licensed under GNU GPL v2
Report bugs to <>
adapter speed: 1000 kHz
Info : transports supported by the debug adapter: "jtag", "swd"
Info : auto-select transport "jtag"
halt and restart using CTI
trst_only separate trst_push_pull
Info : ICE-1000 firmware version is 1.0.2
Info : clock speed 1000 kHz
Info : JTAG tap: adspsc573.adjc tap/device found: 0x428080cb (mfg: 0x065, part: 0x2808, ver: 0x4)
Info : JTAG tap: adspsc573.dap enabled
Info : adspsc573.dap: hardware has 3 breakpoints, 2 watchpoints
Info : adspsc573.dap: but you can only set 1 watchpoint
Info : accepting 'gdb' connection on tcp/3333
Info : JTAG tap: adspsc573.adjc tap/device found: 0x428080cb (mfg: 0x065, part: 0x2808, ver: 0x4)
Info : JTAG tap: adspsc573.dap enabled
Info : adspsc573.dap: hardware has 3 breakpoints, 2 watchpoints
Info : adspsc573.dap: but you can only set 1 watchpoint

In a third console window launch GDB and type target extended-remote :3333. This will make GDB to connect to the gdbserver on the local host using port 3333. Then, load the U-Boot SPL into RAM by typing load. Hit Ctrl+C to interrupt thereafter.

Terminal3: GDB
$ cd /tftpboot
$ /opt/adi-distro-glibc/3.0.0/sysroots/x86_64-adi_glibc_sdk-linux/usr/bin/arm-adi_glibc-linux-gnueabi/arm-adi_glibc-linux-gnueabi-gdb u-boot-spl-sc573-ezkit.elf
(gdb) target extended-remote :3333
Remote debugging using :3333
0x00004884 in ?? ()
(gdb) load
Loading section .text, size 0x9c0c lma 0x20080000
Loading section .rodata, size 0x1198 lma 0x20089c0c
Loading section .dtb.init.rodata, size 0x1460 lma 0x2008adb0
Loading section .data, size 0x514 lma 0x2008c210
Loading section .u_boot_list, size 0xa50 lma 0x2008c724
Start address 0x20080000, load size 53608
Transfer rate: 29 KB/sec, 7658 bytes/write.
(gdb) c
Program received signal SIGINT, Interrupt.

You will see a message on Terminal 1 running minicom, informing you that you can now load U-Boot Proper

Terminal1: minicom
U-Boot SPL 2020.10 (Mar 16 2023 - 13:07:24 +0000)
ADI Boot Mode: 0x0 (JTAG/BOOTROM)
SPL execution has completed.  Please load U-Boot Proper via JTAG

Now, load U-Boot Proper into RAM.

Terminal3: GDB
(gdb) load u-boot-proper-sc573-ezkit.elf
Loading section .text, size 0x3a8 lma 0x89200000
Loading section .text_rest, size 0x46084 lma 0x892003c0
Loading section .rodata, size 0xf56c lma 0x89246444
Loading section .hash, size 0x18 lma 0x892559b0
Loading section .dtb.init.rodata, size 0x19d0 lma 0x892559d0
Loading section .data, size 0x22d8 lma 0x892573a0
Loading section .got.plt, size 0xc lma 0x89259678
Loading section .u_boot_list, size 0x1644 lma 0x89259684
Loading section .rel.dyn, size 0x9c98 lma 0x8925acc8
Loading section .dynsym, size 0x30 lma 0x89264960
Loading section .dynstr, size 0x1 lma 0x89264990
Loading section .dynamic, size 0x90 lma 0x89264994
Loading section .gnu.hash, size 0x18 lma 0x89264a24
Start address 0x89200000, load size 412185
Transfer rate: 30 KB/sec, 11776 bytes/write.
(gdb) c

At this point U-Boot will now be running in RAM on your target board. You should see U-Boot booting in the minicom console (Terminal 1). Press a key to interrupt the boot process before the countdown terminates:

Terminal1: minicom
U-Boot 2020.10 (Mar 16 2023 - 13:07:24 +0000)
CPU:   ADSP ADSP-SC573-0.1 (spi flash boot)
Detected Revision: 1.1
Model: ADI sc573-ezkit
DRAM:  112 MiB
WDT:   Not found!
Loading Environment from SPIFlash... SF: Detected w25q128 with page size 256 Bytes, erase size 4 KiB, total 16 MiB
*** Warning - bad CRC, using default environment
In:    serial@0x31003000
Out:   serial@0x31003000
Err:   serial@0x31003000
Net:   eth0: eth0
Hit any key to stop autoboot:  0

Flash U-Boot to SPI Flash

In the U-Boot console, set the IP address of the Linux PC that hosts the U-Boot loader files (stage1-boot.ldr & stage2-boot.ldr) on TFTP.

Terminal1: minicom
=> setenv serverip <SERVERIP>
=> setenv tftpserverip <SERVERIP>
To find the IP address of your host Linux PC you can issue the ip addr command from the shell or console.

If your network supports DHCP, run:

=> dhcp

If your network does NOT support DHCP, run:

=> set ipaddr <ADDR>

Where <ADDR> is the IP address you want to assign.

If flashing a board that had been previously programmed, it's good to erase the whole flash before as sometimes previous U-Boot installations might leave remnants. You can do that by typing ⇒ sf probe ${sfdev}; sf erase 0 0x1000000 on the U-Boot prompt before proceeding to the following instructions

Next, run the U-Boot update command to copy the U-Boot loader files from the host PC to the target board, and write it into flash:

=> run update_spi_uboot_only

You will see an output similar to the one below:

=> run update_spi_uboot_only
Speed: 1000, full duplex
Using eth0 device
TFTP from server; our IP address is
Filename 'stage1-boot.ldr'.
Load address: 0x89000000
Loading: ####
         2.2 MiB/s
Bytes transferred = 53684 (d1b4 hex)
SF: Detected w25q128 with page size 256 Bytes, erase size 4 KiB, total 16 MiB
device 0 offset 0x0, size 0xd1b4
SF: 53684 bytes @ 0x0 Written: OK
Speed: 1000, full duplex
Using eth0 device
TFTP from server; our IP address is
Filename 'stage2-boot.ldr'.
Load address: 0x89000000
Loading: #############################
         2 MiB/s
Bytes transferred = 412460 (64b2c hex)
SF: Detected w25q128 with page size 256 Bytes, erase size 4 KiB, total 16 MiB
device 0 offset 0x20000, size 0x64b2c
SF: 412460 bytes @ 0x20000 Written: OK

In order to store the serverip and the DHCP or otherwise assigned IP address of the board and have them available on next boot, you can run the following command:

=> saveenv
Saving Environment to SPIFlash... Erasing SPI flash...Writing to SPI flash...done

At this point the U-Boot binary is stored in flash. You can now disconnect the ICE-1000 or ICE-2000 from the development board and make sure to switch the BMODE to position 1. You will only need to reconnect this if your board fails to boot and you need to re-follow these instructions.

Booting Linux

Booting Linux from SPI Flash

The ADSP-SC573-EZKIT comes equipped with 16 MiB of SPI Flash. There's the option of building the adsp-sc5xx-tiny image, after changing the Libc implementation from the default GNU to musl, to further reduce the image's size. Follow the guide in Boot from SPI Flash on the SC58x & SC573


Booting Linux Using TFTP

In order to boot Linux, the TFTP server should be setup as above and a copy of the kernel image should be copied into the /tftpboot directory.

$ cp tmp/deploy/images/adsp-sc573-ezkit/fitImage /tftpboot

NFS Boot

For NFS boot we use the Network File System which is stored in local Ubuntu Host. This is suggested when you do application development. To setup the NFS server:

$ sudo apt-get install nfs-kernel-server
$ sudo vi /etc/exports
#Add following commands
/romfs *(rw,sync,no_root_squash,no_subtree_check)
$ sudo mkdir /romfs/
$ sudo chmod 777 /romfs/
$ sudo service nfs-kernel-server start

We can verify that the NFS service is running by executing

$ sudo service nfs-kernel-server status

The output will indicate that the server is active, i.e.

● nfs-server.service - NFS server and services
     Loaded: loaded (/lib/systemd/system/nfs-server.service; enabled; vendor preset: enabled)
    Drop-In: /run/systemd/generator/nfs-server.service.d
     Active: active (exited) since Tue 2022-09-06 14:38:31 BST; 3 months 14 days ago
   Main PID: 953 (code=exited, status=0/SUCCESS)
      Tasks: 0 (limit: 18797)gxp2
     Memory: 0B
     CGroup: /system.slice/nfs-server.service
Sep 06 14:38:29 $YOUR_HOSTNAME systemd[1]: Starting NFS server and services...
Sep 06 14:38:31 $YOUR_HOSTNAME systemd[1]: Finished NFS server and services.

If it's reported as inactive, wait a few moments and check the status again.

The root filesystem should then be copied to /romfs.

If you are using the ADSP-SC573-EZKIT with the full image (you ran 'bitbake adsp-sc5xx-full'):

$ sudo tar -xf tmp/deploy/images/adsp-sc573-ezkit/adsp-sc5xx-full-adsp-sc573-ezkit.tar.xz -C /romfs

Or if you are using the ADSP-SC573-EZKIT with the minimal image (you ran 'bitbake adsp-sc5xx-minimal'):

$ sudo tar -xf tmp/deploy/images/adsp-sc573-ezkit/adsp-sc5xx-minimal-adsp-sc573-ezkit.tar.xz -C /romfs

Booting into Linux from TFTP

Next, on the target, from u-boot, run the following command:

=> run nfsboot
         Starting Update UTMP about System Runlevel Changes...
[  OK  ] Started Update UTMP about System Runlevel Changes.
     @@@@@@@@  @@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     @@@@@@@@     @@@@@@@@@@@@@@@@@@@@@@@@@@
     @@@@@@@@        @@@@@@@@@@@@@@@@@@@@@@@
     @@@@@@@@            @@@@@@@@@@@@@@@@@@@
     @@@@@@@@               @@@@@@@@@@@@@@@@
     @@@@@@@@                   @@@@@@@@@@@@
     @@@@@@@@                     @@@@@@@@@@
     @@@@@@@@                        @@@@@@@
     @@@@@@@@                     @@@@@@@@@@
     @@@@@@@@                   @@@@@@@@@@@@
     @@@@@@@@               @@@@@@@@@@@@@@@@
     @@@@@@@@            @@@@@@@@@@@@@@@@@@@
     @@@@@@@@        @@@@@@@@@@@@@@@@@@@@@@@
     @@@@@@@@     @@@@@@@@@@@@@@@@@@@@@@@@@@
     @@@@@@@@  @@@@@@@@@@@@@@@@@@@@@@@@@@@@@
        Analog Devices Yocto Distribution
adsp-sc573-ezkit login: root
Password: adi

The default username is root and the password is adi.

/srv/ · Last modified: 10 Jul 2023 15:22 by Vasileios Bimpikas