Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
resources:technical-guides:esd [12 Aug 2022 17:32] – s valerie hamiltonresources:technical-guides:esd [23 Aug 2022 17:43] (current) – s valerie hamilton
Line 1: Line 1:
 ====AD74115H ESD Test Results==== ====AD74115H ESD Test Results====
-The electrostatic discharge (ESD) immunity test emulates the discharges of tens of nanoseconds duration directly on the electronic components. Two discharge methods are used: Contact Discharge and Air Discharge. Contact discharge includes discharge to the conductive surfaces of the EUT. (An ESD test generator is used with a “sharp point” to make direct connection to the EUT (pin) for Contact ESD testing. A “round tip” is added to the generator and is brought close to the EUT (pin) to trigger a spark for Air-Gap ESD testing.+The electrostatic discharge (ESD) immunity test emulates the discharges of tens of nanoseconds duration directly on the electronic components. Two discharge methods are used: Contact Discharge and Air Discharge. Contact discharge includes discharge to the conductive surfaces of the DUT (Device under test). (An ESD test generator is used with a “sharp point” to make direct connection to the DUT (pin) for Contact ESD testing. A “round tip” is added to the generator and is brought close to the DUT (pin) to trigger a spark for Air-Gap ESD testing.
 The IEC 61000-4-2 test levels are listed in Table 1.  The IEC 61000-4-2 test levels are listed in Table 1. 
  
Line 10: Line 10:
 |  4  |  8  |  15  | |  4  |  8  |  15  |
  
-There are two methods of applying the discharges, direct and indirect. Direct application involves direct contact to the conductive surfaces and coupling planes. Indirect application involves air discharge at insulating surfaces. The EUT is exposed to at least 20 discharges at each rating for each type of discharge, 10 each at negative and positive polarity. The discharges are repeated at a rate of one discharge per second.+There are two methods of applying the discharges, direct and indirect. Direct application involves direct contact to the conductive surfaces and coupling planes. Indirect application involves air discharge at insulating surfaces. The DUT is exposed to at least 20 discharges at each rating for each type of discharge, 10 each at negative and positive polarity. The discharges are repeated at a rate of one discharge per second.
  
-The test setup consists of a nonconductive table with a height of 0.8 m, standing on the ground reference plane. A 1.6 m × 0.8 m horizontal coupling plane (HCP) is placed on the table. The EUT and its cable are isolated from the coupling plane by an insulating mat that is 0.5 mm thick.+The test setup consists of a nonconductive table with a height of 0.8 m, standing on the ground reference plane. A 1.6 m × 0.8 m horizontal coupling plane (HCP) is placed on the table. The DUT and its cable are isolated from the coupling plane by an insulating mat that is 0.5 mm thick.
  
 The contact discharges are applied to the IO_P and IO_N terminal screws of the AD74115H output terminal block P21. The AD74115H also has two uncommitted high voltage sense pins (SENSE_EXT1 and SENSE_EXT2) that can be measured with the ADC. The contact discharges were also applied to the terminal screws of the AD74115H terminal block P8.  The contact discharges are applied to the IO_P and IO_N terminal screws of the AD74115H output terminal block P21. The AD74115H also has two uncommitted high voltage sense pins (SENSE_EXT1 and SENSE_EXT2) that can be measured with the ADC. The contact discharges were also applied to the terminal screws of the AD74115H terminal block P8. 
Line 78: Line 78:
  
 ===Table 2 Contact Discharge Results=== ===Table 2 Contact Discharge Results===
-^  Test Level  ^  Use Case  ^  Contact Terminal  ^  Pre Test Average ADC  ^  Post Test Average ADC ^  Deviation (%FSR)  ^  Performance  ^+^  Test Level  ^  Use Case  ^  Contact Terminal  ^  Pre Test Average ADC  ^  Post Test Average ADC  ^  Deviation (%FSR)  ^  Performance  ^
 |  6 kV  |  Current Output  |  IO_P  |  12.49870932 mA  |  12.4973029 mA  |  -0.005626  |  Class B  | |  6 kV  |  Current Output  |  IO_P  |  12.49870932 mA  |  12.4973029 mA  |  -0.005626  |  Class B  |
 |  :::  |  :::  |  IO_N  |  12.498586 mA  |  12.498401 mA  |  -0.000739  |  Class B  | |  :::  |  :::  |  IO_N  |  12.498586 mA  |  12.498401 mA  |  -0.000739  |  Class B  |
Line 89: Line 89:
  
 ===Table 3 Coupling Discharge Results=== ===Table 3 Coupling Discharge Results===
-^  Test Level  ^  Use Case  ^  Contact Terminal  ^  Pre Test Average  ^  Post Test Average  ^  Deviation (%FSR) ^   Performance  ^+^  Test Level  ^  Use Case  ^  Contact Terminal  ^  Pre Test Average  ^  Post Test Average  ^  Deviation (%FSR)   Performance  
 |  6 kV  |  Current Output  |  HCP  |  12.497659 mA  |  12.497732 mA  |  0.000290  |  Class B  | |  6 kV  |  Current Output  |  HCP  |  12.497659 mA  |  12.497732 mA  |  0.000290  |  Class B  |
 |  :::  |  :::  |  VCP  |  12.497540 mA  |  12.497368 mA  |  -0.000688  |  Class B  | |  :::  |  :::  |  VCP  |  12.497540 mA  |  12.497368 mA  |  -0.000688  |  Class B  |
resources/technical-guides/esd.txt · Last modified: 23 Aug 2022 17:43 by valerie hamilton