Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
resources:eval:user-guides:eval-adicup360:hardware:cn0411 [26 Jul 2018 03:24] – created Angelo Nikko Catapangresources:eval:user-guides:eval-adicup360:hardware:cn0411 [30 Jul 2021 07:43] (current) – [Registration] Zuedmar Arceo
Line 1: Line 1:
-====== EVAL-CN0411-ARDZ Shield Overview ======+======EVAL-CN0411-ARDZ Shield Overview====== 
 +[[ADI>CN0411]] is a total dissolved solids measurement (TDS) system using direct measurement of conductivity of the solution. The system can measure low to high conductivity levels ranging from 1 μS to 0.1 S and can accommodate 2-wire conductivity probes of different cell constants from 0.01 to 10. Temperature compensation is performed using either a 100 Ω or 1000 Ω 2-wire RTD.\\ \\  
 +[[ADI>CN0411]] generates a bipolar square wave excitation across the conductivity probe using the [[ADI>AD5683R]], a 16-bit SPI voltage DAC, and the [[ADI>ADG884]], ultra-low on-resistance CMOS Dual 2:1 SPDT switch. The frequency of the excitation is controlled by a PWM signal from the microcontroller which can be set to either 2.4 kHz or 94 Hz via the system software.\\ \\  
 +The range of conductivity measurement can be adjusted using gain resistors switched using the [[ADI>ADG1608]], a 16:1 multiplexer.\\ \\  
 +The conductivity cell signal is measured by the [[ADI>AD8220]], a low-input current JFET instrumentation amplifier. Then, A track-and-hold amplifier implemented using [[ADI>AD8628]], a zero-drift rail-to-rail single supply op amp, samples the signal for the [[ADI>AD7124-8]], a low noise low power 24-bit Sigma-Delta ADC. With the software calibration, the calibrated system accuracy is less than 2% for all conductivity ranges from 1 μS to 0.01 S and less than 7% for conductivity ranges greater than 0.01 S. This makes the system reliable for conductivity measurement used to compute TDS.\\ \\  
 +This design uses a combination of components that allow for single supply operation which minimize circuit complexity, making this suitable for low-power and portable instrument applications. Applications include chemical water analysis for field research, and monitoring water systems and natural bodies of water.\\ 
 +\\ 
 +{{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:20180628_145941.jpg?nolink&600 |}}\\  
 +=====Total Dissolved Solids Measurement===== 
 +The measurement of the total dissolved solids in a solution relies primarily on the conductivity and the temperature of the solution. Furthermore, the TDS factor, used to compute the TDS from the temperature-compensated conductivity value, varies at a defined range for different types of solutions based on the type of dissolved solids. The temperature coefficient used for compensation also depends on the type of the dissolved solid. Thus, total dissolved solids remains a general measure for water quality and cannot distinguish between the constituents of the dissolved solids in the solution. 
 +====Hardware Connection and Jumper Configurations==== 
 +The [[ADI>CN0411]] connects to the [[ADI>ADICUP360|EVAL-ADICUP360]] using the Arduino mating headers. Shown below is the [[ADI>CN0411]], connected to the [[ADI>ADICUP360|EVAL-ADICUP360]], with labels for the hardware connections and jumper headers.\\ 
 +{{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:shunt_header_positions.jpg?nolink&600 |}}\\ 
 +===Sensor Connections=== 
 +The CN-0411 has three hardware connectors which have no polarity and can connect directly to the sensors:\\ \\  
 +J1 is for 2-wire conductivity probes with a BNC plug. This is compatible with common commercial probes. Below are recommended probes of different cell constants.\\  
 +^  Cell Constant  ^  Description                      ^  Images 
 +|  0.1            |  CS SK21T 2-Electrode Glass Cell  |  {{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:s217t.gif?nolink&200 |}}  | 
 +|  1              |  CS SK20T 2-Electrode Glass Cell  |  {{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:cs-sk20.jpg?nolink&200 |}}  | 
 +|  10              CS SK23T 2-Electrode Glass Cell  |  {{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:s218t.gif?nolink&200 |}}  | 
 +P2 is a terminal block connector for conductivity probe's with no BNC plug. The connection diagram is shown below\\  
 +{{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:probe_connection.png?nolink&600 |}} 
 +P3 is a terminal block connector for a 2-wire RTD. The software is compatible with Pt100 and Pt1000 RTDs. The connection diagram is shown below\\  
 +{{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:rtd_connection.png?nolink&600 |}} 
 +===Jumper Configurations=== 
 +The [[ADI>CN0411]] has four jumper headers which configure different settings as shown below. Also, the default shunt positions are highlighted.\\ 
 +{{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:board_silkscreen_with_edits.png?nolink&600 |}}\\ 
 +===Sensor Select=== 
 +PRB_SEL selects the connection to the conductivity sensor. By default, the shunt is placed connecting pin 1 and 2 to measure the conductivity of the solution.\\  
 +^  PRB_SEL Shunt Position  ^  Conductivity Sensor Connection 
 +|  1 and 2                  Conductivity Probe              | 
 +|  3 and 4                  200Ω Precision Resistor         | 
 +|  5 and 6                  20Ω Precision Resistor          | 
 +  * Connecting Pins 1 and 2 allows the system to measure the conductivity of the solution. 
 +  * Connecting Pins 3 and 4 allows the system to calibrate in the 0.01 S range 
 +  * Connecting Pins 5 and 6 allows the system to calibrate in the 0.1 S range 
 +===Signal Input Select=== 
 +P6 selects selects the input to the [[ADI>AD8220]] instrumentation amplifier. By default, the shunt position connects pins 1 and 2 to sample the conductivity sensor.\\  
 +^  P6 Shunt Position  ^  AD8220 Instrumentation Amplifier Input  ^ 
 +|  1 and 2            |  Conductivity Signal                     | 
 +|  2 and 3            |  AGND                                    | 
 +  * By connecting Pins 1 and 2, the [[ADI>AD8220]] instrumentation amplifier samples the signal from the connected conductivity sensor.  
 +  * Connecting Pins 2 and 3 allows the system to perform zero-scale calibration of the system. 
 +===ADC Chip Select=== 
 +CS_ADC selects the chip select GPIO pin for the [[ADI>AD7124-8]]. This allows for multiple board stack-up of [[ADI>CN0411]] for customer applications requiring 2 conductivity readings. By default, the shunt position connects pins 3 and 4 to set the chip select to GPIO30.\\  
 +^  CS_ADC Shunt Position  ^  AD7124-4 Chip Select   ^ 
 +|  1 and 2                |  DIGI1 Pin 1 or GPIO28 
 +|  3 and 4                |  DIGI1 Pin 2 or GPIO30 
 +===DAC Chip Select=== 
 +CS_DAC selects the chip select GPIO pin for the [[ADI>AD5683R]]. This allows multiple board stack-up of [[ADI>CN0411]] for customer applications requiring the interface of 2 conductivity sensors. By default, the shunt position connects pins 1 and 2 to set the chip select to GPIO26.\\  
 +^  CS_DAC Shunt Position  ^  AD5683R Chip Select    ^ 
 +|  1 and 2                |  DIGI1 Pin 3 or GPIO26 
 +|  3 and 4                |  DIGI0 Pin 3 or GPIO15 
 +====Conductivity Measurement==== 
 +The system measures conductivity using a 2-wire conductivity probe to be immersed in the solution as shown below.\\  
 +{{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:probe_immersion.png?nolink&200 |}}\\  
 +It is preferable that the conductivity probe be positioned at the center of the container to maximize the accuracy of the measurement. The cell constant of a 2-wire conductivity probe is the distance between its two cells or electrodes divided by their inner surface area. The cell constant of the conductivity probe sets the range of conductivity measurements it is suitable to use. Proper selection of the probe makes it easier for the system to measure at a certain conductivity range. Below is the table listing the range of conductivity measurements appropriate for the probe's cell constant.\\  
 +^  Cell Constant  ^  Range of Measured Conductivity 
 +|  0.01            < 0.1 μS/cm                     | 
 +|  0.1            |  0.1 μS/cm to 100 μS/cm          | 
 +|  1              |  100 μS/cm to 10 mS/cm           | 
 +|  10              10 mS/cm to 1 S/cm              | 
 +<note important>Conductivity probes have different rated voltages. Before connecting the probe to the [[ADI>CN0411]], check the excitation voltage setting in the software and configure it to within the specified rating.</note> 
 +The frequency of the excitation signal across the conductivity cells depends on the range of conductivity measurement. The system can switch between 94 Hz, suitable for  measurements in the μS range, and 2.4kHz suitable for measurements in the mS range and above. 
 +====Temperature Measurement==== 
 +The system can use either Pt100 or Pt1000 RTD sensors and is configurable through the software. Most commercial probes in the market have these RTDs built in the conductivity probe.\\  
 +The temperature coefficient depends on the type of solution and can be configured in the software. The system has built-in stored values for sodium chloride (NaCl) and potassium chloride (KCl) solutions as shown in the table below.\\  
 +^  Salt Solution              Temperature Coefficient (α)  ^ 
 +|  Potassium Chloride (KCl)  |  1.88                         | 
 +|  Sodium Chloride (NaCl)    |  2.14                         | 
 +====Total Dissolved Solids Measurement==== 
 +The total dissolved solids in the solution is computed from the temperature-compensated conductivity measurement by the TDS factor which varies per type of dissolved solid. This can be configured through software and the system has built-in stored values for NaCl and KCl solutions.\\  
 +^  Salt Solution              Range of TDS Factor (ke)  ^ 
 +|  Potassium Chloride (KCl)  |  0.50 to 0.57              | 
 +|  Sodium Chloride (NaCl)    |  0.47 to 0.50              | 
 +====Calibration and Auto-ranging==== 
 +The system can automatically select the proper gain resistance from the user-defined excitation voltage when commanding the system to measure TDS. Below is the procedure used to select the gain resistance appropriate to the measured conductivity range.\\  
 +{{ :resources:eval:user-guides:eval-adicup360:hardware:cn0411:auto-range_flowchart.png?nolink&600 |}}\\  
 +To decrease the effect of system noise to the measurement, the zero-scale calibration should be performed once per board. Every measured voltage level will be referenced to the zero-scale calibration voltage. Below are the steps to perform zero-scale calibration. 
 +  - Place the shunt position of jumper header P6 to connect pins 2 and 3. 
 +  - Command the software to perform zero-scale calibration. 
 +  - Wait for the command to finish 
 +  - Place the shunt position of the jumper header P6 back to pins 1 and 2\\ \\  
 +To increase the accuracy of the system in the 0.01 S range or 0.1 S range, reference-resistor calibration should be performed once per board. This calibrates the system to a known 200 Ω and 20 Ω precision resistance, respectively. Below are the steps to perform reference-resistor calibration. 
 +  - Place the shunt position of PRB_SEL to connect pins 3 and 4 for a 0.01 S range calibration or to connect pins 5 and 6 for a 0.1 S range calibration. 
 +  - Command the software to perform a reference resistor calibration 
 +  - Wait for the command to finish 
 +  - Place the shunt position of the jumper header PRB_SEL back to pins 1 and 2\\  
 +===== Software ===== 
 + 
 +  * [[/resources/eval/user-guides/eval-adicup360/reference_designs/demo_cn0411| ADICUP360 + CN0411 Demo Software and Setup]] 
 +===== Schematic, PCB Layout, Bill of Materials ===== 
 +<WRAP round 80% download> 
 + 
 +[[adi>cn0411-designsupport|EVAL-CN0411-ARDZ Design & Integration Files]]  
 +\\  
 +  * Schematics  
 +  * PCB Layout  
 +  * Bill of Materials  
 +  * Allegro Project 
 +</WRAP> 
 + 
 +=====Registration=====  
 +<WRAP round tip 80% > 
 +Receive software update notifications, documentation updates, view the latest videos, and more when you register your hardware.  [[reg>EVAL-CN0411-ARDZ?&v=RevC|Register]] to receive all these great benefits and more! 
 +</WRAP> 
 + 
 + 
 +// End of Document //
resources/eval/user-guides/eval-adicup360/hardware/cn0411.1532568294.txt.gz · Last modified: 26 Jul 2018 03:24 by Angelo Nikko Catapang