Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:turbidity [22 Jul 2022 07:55] Angelo Nikko Catapangresources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:turbidity [22 Jul 2022 09:05] (current) Joyce Velasco
Line 1: Line 1:
 -----------------------------------------------------------------------------------------------------------------------------====== EVAL-ADPD410X-ARDZ Turbidity Measurement Demo ====== -----------------------------------------------------------------------------------------------------------------------------====== EVAL-ADPD410X-ARDZ Turbidity Measurement Demo ======
-The **[[ADI>EVAL-ADPD410x-ARDZ]]** allow users to take advantage of the flexibility of the **[[ADI>ADPD4100]]** and **[[ADI>ADPD4101]]** as multimodal sensor front ends to a wide range of applications. One example of a specialized application is the **[[ADI>CN0409]]**, a reference design for turbidity measurement. This demonstration shows how to measure turbidity using a similar method but using the **[[ADI>EVAL-ADPD410x-ARDZ]]**.+The **[[ADI>EVAL-ADPD410x-ARDZ]]** allows users to take advantage of the flexibility of the **[[ADI>ADPD4100]]** and **[[ADI>ADPD4101]]** as multimodal sensor front ends to a wide range of applications. One example of a specialized application is the **[[ADI>CN0409]]**, a reference design for turbidity measurement. This demonstration shows how to measure turbidity using a similar methodbut using the **[[ADI>EVAL-ADPD410x-ARDZ]]**.
  
 ===== General Description/Overview ===== ===== General Description/Overview =====
-The International Organization for Standardization (ISO) developed a design standard known as ISO7027 Water Quality—Determination of Turbidity, which is best known for its requirement of a monochromatic light source. Most instruments that comply with this standard use an 860 nm LED light source and a primary detector at an angle of 90°. Additional detection angles are allowed, such as a detector at an angle of 180°, to increase the range of measurable turbidity levels.+The International Organization for Standardization (ISO) developed a design standard known as ISO 7027 Water Quality—Determination of Turbidity, which is best known for its requirement of a monochromatic light source. Most instruments that comply with this standard use an 860 nm LED light source and a primary detector at an angle of 90°. Additional detection angles are allowed, such as a detector at an angle of 180°, to increase the range of measurable turbidity levels.
  
-The demo will use a network of 860nm Infrared emitters and silicon PIN photodiodes to achieve a water turbidity measurement system. The system can measure low to high water turbidity levels ranging from 0 FTU to 1000 FTU.+The demo uses a network of 860 nm infrared emitters and silicon PIN photodiodes to achieve a water turbidity measurement system. The system can measure low to high water turbidity levels ranging from 0 FTU to 1000 FTU.
  
 ===== Demo Requirements ===== ===== Demo Requirements =====
 The following is a list of items needed to replicate this demo: The following is a list of items needed to replicate this demo:
-  * [[ADI>EVAL-ADPD4100-ARDZ]] or [[ADI>EVAL-ADPD4101-ARDZ]]+  * [[ADI>EVAL-ADPD410x-ARDZ]]
   * [[ADI>EVAL-ADICUP3029]] with firmware (see Firmware Setup)   * [[ADI>EVAL-ADICUP3029]] with firmware (see Firmware Setup)
   * Host computer with PyADI-IIO and relevant dependencies installed (See [[resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x#python-and-pyadi-iio|EVAL-ADPD410X-ARDZ Python Example]])   * Host computer with PyADI-IIO and relevant dependencies installed (See [[resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x#python-and-pyadi-iio|EVAL-ADPD410X-ARDZ Python Example]])
-  * [[https://www.fireflysci.com/disposable-fluorescence-cells/type-1flp-disposable-macro-cuvettes-lightpath-10 mm|Type 1FLP Disposable Macro Cuvettes UV Plastic (Lightpath: 10mm)]]+  * [[https://www.fireflysci.com/disposable-fluorescence-cells/type-1flp-disposable-macro-cuvettes-lightpath-10 mm|Type 1FLP Disposable Macro Cuvettes UV Plastic (Lightpath: 10 mm)]]
   * [[https://www.digikey.com/en/products/detail/on-semiconductor/QED123/187398 | QED-123 Infrared LED]]   * [[https://www.digikey.com/en/products/detail/on-semiconductor/QED123/187398 | QED-123 Infrared LED]]
   * 2 x [[https://www.digikey.com/en/products/detail/onsemi/QSD123/187443 | QSD123 Infrared Photo Transistor]]   * 2 x [[https://www.digikey.com/en/products/detail/onsemi/QSD123/187443 | QSD123 Infrared Photo Transistor]]
Line 34: Line 34:
 | POWER (S5) | WALL/USB           | | POWER (S5) | WALL/USB           |
  
-Connect the EVAL-ADPD4100-ARDZ or EVAL-ADPD4101-ARDZ to the EVAL-ADICUP3029 using the headers shown below.\\ {{:resources:eval:user-guides:circuits-from-the-lab:adpd410x:arduinoconnection.jpg?nolink&400|}}+Connect the [[ADI>EVAL-ADPD410x-ARDZ]] to the [[ADI>EVAL-ADICUP3029]] using the headers, as shown below.\\ {{:resources:eval:user-guides:circuits-from-the-lab:adpd410x:arduinoconnection.jpg?nolink&400|}}
  
 ===== Firmware Setup ===== ===== Firmware Setup =====
-Connect the EVAL-ADICUP3029 to the PC using the micro-USB to USB cable.+Connect the [[ADI>EVAL-ADICUP3029]] to the PC using the micro USB to USB cable.
 Drag and drop the appropriate .hex file from the list below to the Daplink Drive. (See [[:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x#driver-/-firmware-setup]]) Drag and drop the appropriate .hex file from the list below to the Daplink Drive. (See [[:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x#driver-/-firmware-setup]])
  
Line 52: Line 52:
  
 ===== DIY Test Board Setup ===== ===== DIY Test Board Setup =====
-To setup the optical path, use the prototype board that comes in the box with the [[ADI>EVAL-ADPD4100-ARDZ]] or [[ADI>EVAL-ADPD4101-ARDZ]] as a base. The connection diagram for the QED123 LED and the QSD123 is shown below:+To set up the optical path, use the prototype board that comes in the box with the [[ADI>EVAL-ADPD410x-ARDZ]] as a base. The connection diagram for the QED123 LED and the two QSD123 is shown below:
  
 {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:turbidity-connectiondiagram.png?nolink&600|}} {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:turbidity-connectiondiagram.png?nolink&600|}}
  
-To connect to the EVAL-ADPD410X-ARDZ, solder the 18-pin single row female headers at the bottom sides of the prototype board. Solder the 6-pin female headers enclosing a 5 x 5 pad space as a DIY cuvette holder. Solder the LEDs and photodiodes at 3 adjacent sides of the cuvette holder and directed inward. A photo of a completed test board setup mounted on the EVAL-ADPD410X-ARDZ and the EVAL-ADICUP3029 is shown below using Female-to-Female headers for connection.+  - To connect to the [[ADI>EVAL-ADPD410x-ARDZ]], solder the two 18-pin single row female headers at the bottom sides of the prototype board.  
 +  - Solder the four 6-pin female headers enclosing a 5 x 5 pad space as a DIY cuvette holder.  
 +  - Solder the LEDs and photodiodes at 3 adjacent sides of the cuvette holder and directed inward. A photo of a completed test board setup mounted on the [[ADI>EVAL-ADPD410X-ARDZ]] and the [[ADI>EVAL-ADICUP3029]] is shown below using Female-to-Female headers for connection.
  
 {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:img_20220720_150406.jpg?nolink&600|}} {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:img_20220720_150406.jpg?nolink&600|}}
  
-You can place a sample placed in a cuvette to the square space at the center as shown below.+You can place a sample placed in a cuvette to the square space at the centeras shown below.
  
 {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:img_20220722_130556.jpg?nolink&600|}} {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:img_20220722_130556.jpg?nolink&600|}}
Line 66: Line 68:
 ===== Software Setup ===== ===== Software Setup =====
 This demo uses a PyADI-IIO example script. See [[:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x#software_setup | Software Setup]] for the complete installation instructions from libiio to pyadi-iio. This demo uses a PyADI-IIO example script. See [[:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x#software_setup | Software Setup]] for the complete installation instructions from libiio to pyadi-iio.
-  - Connect the [[ADI>EVAL-ADPD4100-ARDZ]] or [[ADI>EVAL-ADPD4101-ARDZ]] to the [[ADI>EVAL-ADICUP3029]]. +  - Connect the [[ADI>EVAL-ADPD410x-ARDZ]] to the [[ADI>EVAL-ADICUP3029]]. 
-  - Connect the EVAL-ADICUP3029 to the PC using the micro-USB cable and note the serial port from the Device Manager as in [[resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x#connection | Connection]].+  - Connect the [[ADI>EVAL-ADICUP3029]] to the PC using the micro USB cable and note the serial port from the Device Manager as in [[resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x#connection | Connection]].
   - Open command prompt or terminal and navigate through the examples folder inside the downloaded or cloned //pyadi-iio// directory.   - Open command prompt or terminal and navigate through the examples folder inside the downloaded or cloned //pyadi-iio// directory.
   - Run the example script using the command. <code>...\pyadi-iio\examples>python adpd410x_demo.py</code>   - Run the example script using the command. <code>...\pyadi-iio\examples>python adpd410x_demo.py</code>
-  - The script will ask for a serial port. Input the noted serial port and press Enter. In cases when the board is not found, press the reset button (S1) on the EVAL-ADPD4100-ARDZ or EVAL-ADPD4101-ARDZ and input the noted serial port again.\\ {{:resources:eval:user-guides:circuits-from-the-lab:adpd410x:pyadiiio_example2_comport.png?nolink&400|}}+  - The script will ask for a serial port. Input the noted serial port and press Enter. In cases when the board is not found, press the reset button (S1) on the [[ADI>EVAL-ADPD410x-ARDZ]] and input the noted serial port again.\\ {{:resources:eval:user-guides:circuits-from-the-lab:adpd410x:pyadiiio_example2_comport.png?nolink&400|}}
   - When the board is detected, you will be asked to specify the demo application to use. Since this setup is only applicable for turbidity measurements, enter 3.\\ {{:resources:eval:user-guides:circuits-from-the-lab:adpd410x:demo_selectapplication.png?nolink&400|}}   - When the board is detected, you will be asked to specify the demo application to use. Since this setup is only applicable for turbidity measurements, enter 3.\\ {{:resources:eval:user-guides:circuits-from-the-lab:adpd410x:demo_selectapplication.png?nolink&400|}}
   - A plot will appear showing the measured and computed turbidity in FTU. You have the option to save a copy of the displayed waveform at any point in time using the matplotlib controls at the top. Remove the cuvette and replace the sample with a different turbidity to observe the measurement change.\\ \\ **Low Turbidity Sample**\\ {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:screenshot_2022-07-22_133951.png?nolink&400|}}\\ \\ **High Turbidity Sample**\\ {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:screenshot_2022-07-22_133731.png?nolink&400|}}\\    - A plot will appear showing the measured and computed turbidity in FTU. You have the option to save a copy of the displayed waveform at any point in time using the matplotlib controls at the top. Remove the cuvette and replace the sample with a different turbidity to observe the measurement change.\\ \\ **Low Turbidity Sample**\\ {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:screenshot_2022-07-22_133951.png?nolink&400|}}\\ \\ **High Turbidity Sample**\\ {{:resources:eval:user-guides:circuits-from-the-lab:eval-adpd410x:screenshot_2022-07-22_133731.png?nolink&400|}}\\ 
  
 <note important> <note important>
-The measurements obtained have not been tested in accuracy to the actual turbidity measurement and is not expected to be accurate. The demo showcases a proof-of-concept DIY setup for turbidity measurement which users can tweak and improve upon.+The measurements obtained have not been tested and verified with the actual turbidity measurementand is not expected to be accurate. The demo showcases a proof-of-concept DIY setup for turbidity measurementwhich users can tweak and improve upon.
 </note> </note>
  
resources/eval/user-guides/circuits-from-the-lab/eval-adpd410x/turbidity.txt · Last modified: 22 Jul 2022 09:05 by Joyce Velasco