This is an old revision of the document!
CN-0235 Software User Guide
EVAL-CN0235-EB1Z Overview
CN0235 is a Fully Isolated Lithium Ion Battery Monitoring System. Lithium ion (Li-Ion) battery stacks contain a large number of individual cells that must be monitored correctly in order to enhance the battery efficiency, prolong the battery life, and ensure safety.
The 6-channel AD7280A devices act as the primary monitor providing accurate voltage measurement data to the System Demonstration Platform (SDP-B) evaluation board, and the 6-channel AD8280 devices act as the secondary monitor and protection system. Both devices can operate from a single wide supply range of 8V to 30 V and operate over the industrial temperature range of −40°C to +105°C
The AD7280Acontains an internal ±3 ppm reference that allows a cell voltage measurement accuracy of ±1.6 mV. The ADC resolution is 12 bits and allows conversion of up to 48 cells within 7 μs. It also has cell balancing interface outputs designed to control external FET transistors to allow discharging of individual cells and forcing all the cells in the stack to have identical voltages.
The AD8280 functions independently of the primary monitor and provides alarm functions indicating out of tolerance conditions. It contains its own reference and LDO, both of which are powered completely from the battery cell stack. The reference, in conjunction with external resistor dividers, is used to establish trip points for the over/undervoltages. Each cell channel contains programmable deglitching (D/G) circuitry to avoid alarming from transient input levels.
Required Equipment
General Setup
-
The
EVAL-CN0235-SDPZ (CN0235 Board) is powered by a +6V Wall wart via the DC barrel jack.
The
EVAL-SDP-CB1Z (SDP-B board) connects to the PC via the
USB-cable.
Figure 1: CN0235 general setup
SDP USB connection – Connect to PC through
USB Type A to mini-
USB.
Jumper Configuration – Sets AD8280 and AD7280A configuration. Jumper configuration setting is explained further on the next section.
VIN0 to VIN6 – Lithium Ion battery stacks input. This connector is used when only one device is required.
NOTE: Please see AD7280A Datasheet page 17 and page 22 for proper battery connection for different number of cells.
VIN7 to VIN12 – Lithium Ion battery stacks input. This connector is used when two devices are required for the application.
NOTE: Please see AD7280A Datasheet page 18 for proper battery cell connection using two devices.
Power Supply – The board may be powered up using a +6V wall-wart connected to the barrel jack or using an external power supply configured to +6V.
SPI breakout pins – These are the breakout pins of the digital lines coming from the SDP board to AD7280A devices.
Jumper Configuration
Jumper | Description | Configuration |
| AD8280 Jumper configurations
| |
NPTC | Selects NTC or PTC thermistor for AD8280's VTx inputs | HIGH: PTC thermistor
LOW: NTC thermistor |
ALARMSEL | Selects three separate alarms or one shared alarm for AD8280. | HIGH: Three separate alarms are selected
LOW: One shared alarm is selected |
DGT0
DGT1
DGT2 | Sets the deglitch time for AD8280 for the transient immunity at cell inputs. | Deglitch time may be set from 0s to 10s. Refer to AD8280 datasheet page 20 table 7 |
SEL0
SEL1 | Sets the number of cells to be monitored for AD8280 | The number of cells to be monitored may be set to three, four, five or six. Refer to AD8280 datasheet page 19 table 5 |
AD7280A Auxiliary ADC inputs
configures the temperature measurement circuit
see AD7280A Datasheet for more details |
J31 : J36 | Sets the bottom AD7280A Aux inputs | required temperature measurement |
J20 : J29 | Sets the top AD7280A Aux inputs | required temperature measurement |
J30 and J12 | AD7280A’s Vreg and ground male headers | leave it open |
HOW TO INSTALL THE EVALUATION SOFTWARE
Extract the file
CN0235 Eval Software.zip and open the file
setup.exe.
NOTE: It is recommended that you install the CN0235 Evaluation Software to the default directory path C:\Program Files\Analog Devices\CN0235\ and all National Instruments products to C:\Program Files\National Instruments\
Click
Next to view the installation review page
Click
Next to start the installation
Upon completion of the installation of the
CN0235 Evaluation Software, the installer for the
ADI SDP Drivers will execute.
NOTE: It is recommended that you close all other applications before clicking “Next”. This will make it possible to update relevant system files without having to reboot your computer.

Press
“Next” to set the installation location for the
SDP Drivers.
It is recommended that you install the drivers to the default directory path
C:\Program Files\Analog Devices\SDP\Drivers
Press
“Next” to install the
SDP Drivers and complete the installation of all software. Click
“Finish” when done.

Connecting the Hardware
Step 1. Connect the
EVAL-CN0235-SDPZ to
EVAL-SDP-CB1Z(SDP Board) through the 120-pin SMD connector. Nylon hardware should be used to firmly secure the two boards, using the holes provided at the ends of the 120-pin connectors.
Step 2. Do the jumper setting correctly based on desired setting for evaluation based on the jumper configuration provided on
Jumper Configuration section.
Step 3. Plug the mini-
USB side of the cable into the mini-
USB connector J1 on
SDP Board and leave the other side of the cable(
USB Type A) floated.
Step 4. Connect the battery stack on J1 and J2 based on the number of cells configured by the jumper SEL0 and SEL1. Refer to the jumper configuration on
General Setup section.
Step 5. Plug in the wallwart and connect it to the barrel jack connector of the
EVAL-CN0235-SDPZ .
Step 6. Connect the
USB-Type-A side of the
USB cable to the PC.
USING THE EVALUATION SOFTWARE
Software Front Panel
Connect to SDP-B Board Button
When this button is pressed, the SDP-B Board makes a
USB connection to the
CN0235Board. A connection to the SDP-B Board must be made to use the software.
Device Selector
Enable Real Time ADC Reads
Read ADC
Software Reset
Hardware PD
Clicking this button will put
AD7280A in to Full Power-Down mode, meaning, both the analog and digital circuitry of the
AD7280A will be shut down, this in turn will only require 5uA maximum current. This button will also disable
AD8280.
Software PD
. Clicking this button will put
AD7280A in to Software Power-Down mode which requires only 3.8
mA maximum current. This button will also disable
AD8280.
Software/Hardware PU
Clicking this button will power up the
AD7280A when it’s coming from a software power down or hardware power down mode. This button will not enable the
AD8280.
Enable/Disable AD8280
Self-Test AD8280
Save Data to File
Control Tabs
Voltage(Codes)/Voltage(Volts): Clicking either of these tabs brings out the voltage reading on each device's channel in front. These tabs shows the reading in either Codes or voltage format.
Temperature(Codes)/Temperature(Volts): Clicking either of these tabs brings out the temperature reading in front. These tabs shows the reading in either Codes or voltage format.
Configure AD7280A: Clicking this tab will bring the AD7280A configurations in front.
Advanced: Clicking this tab will bring out the advanced control for the device in front.
SDP Firmware Release Info Clicking this tab will bring out the firmware information currently installed in the PC.
AD7280A Configuration
Warning indicators
AD7280 Alert: This is the primary monitor’s alert indicator. When the voltage or temperature reading exceeded the user defined thresholds from the AD7280A configuration, this LED will light up.
Under Voltage: This is one of the secondary monitor’s alert indicator. When the voltage or temperature reading exceeded the user defined floor threshold, this LED will light up.
Over Voltage: This is one of the secondary monitor’s alert indicator. When the voltage or temperature reading exceeded the user defined ceiling threshold, this LED will light up.
Voltage(codes) tab
The voltage (code format) tab features two types of display namely the tanks and graph display:
Tank Display
The tank display provides the ADC code equivalent of the reading in bar-like comparison for each channel. This type of display provides the latest reading of the Lithium ion battery cells.
Graph Display
The graphical display tab provides the user with more features or options for the reading analysis.
Codes vs Sample graph
Latest channel code value
Plot navigator
Additional graph functions
A right-click on the graph will give the user additional plot and data control features.
Voltage(Volts) tab
The voltage (volts format) tab features two types of display namely the tanks and graph display:
Tank Display
The tank display provides the ADC voltage equivalent of the reading in bar-like comparison for each channel. This type of display provides the latest reading of the Lithium ion battery cells.
Graph Display
The graphical display tab provides the user with more features or options for the measurement analysis.
Codes vs Sample graph
Latest channel code value
Plot navigator
Additional graph functions
A right-click on the graph will give the user additional plot and data control features.
Temperature(codes) tab
The Temperature (codes format) tab features two types of display namely the tanks and graph display:
Tank Display
The tank display provides the ADC code temperature reading of the thermistor in bar-like comparison for each channel. This type of display provides the latest reading of the Lithium ion battery cells.
Graph Display
The graphical display tab provides the user with more features or options for the reading analysis.
Codes vs Sample graph
Latest channel code value
Plot navigator
Additional graph functions
A right-click on the graph will give the user additional plot and data control features.
Temperature(Volts) tab
The temperature (volts format) tab features two types of display namely the tanks and graph display:
Tank Display
The tank display provides the ADC voltage equivalent of the thermistor reading in bar-like comparison for each channel. This type of display provides the latest reading of the Lithium ion battery cells.
Graph Display
The graphical display tab provides the user with more features or options for the measurement analysis.
Codes vs Sample graph
Latest channel code value
Plot navigator
Additional graph functions
A right-click on the graph will give the user additional plot and data control features.
Force Update
Voltage and Temperature Thresholds
Conversion Averaging
Sets the AD7280’s conversion averaging feature where the acquisition and conversion of each cell input is repeated before the results are read back through
SPI interface.
Acquisition Time
Sets the time required to acquire an input signal. The acquisition time is calculated using the following formula: tACQ = 10 x ((Rsource + R) x C). where:
R = 300 ohm, the resistance seen by the track and hold amplifier looking at the input.
C = 15pF, the sampling capacitance.
Rsource = any extra source impedance on the analog input between external capacitors and the input pins.
-
Self-Test AD7280A
This button initiates the self-test conversion of AD7280A, this feature allows the ADC and reference buffer’s operation to be verified.
NOTE: The self-test conversion result varies between
Code 970 and Code 990.
Cell Balance Outputs
Cell Balance Timers
Sets the on-time of each Cell Balance output. The timer may be set from 0 minutes to 36.9 minutes with a 71.5second resolution. See
AD7280A Datasheet page 27 for additional details and example configurations of the Cell balance timer.
Thermistor Term Resistor
Sets if the thermistor termination pin
AUXterm will be used to terminate the thermistor inputs for each auxiliary ADC input of the AD7280A.
NOTE: Due to settling time requirements, the thermistor termination resistor option should only be used when the acquisition time of AD7280A is set to the highest value which is 1.6us
Advanced tab
The advanced tab allows the user to read/write to the AD7280A’s registers.
NOTE: It is recommended to read AD7280A Datasheet, AD8280 datasheet and CN0235 and clearly understand the meaning and effect of the configuration before writing a new value in the AD7280A’s register.
Dev0 and Dev1 Register Address
This the list of the register address of
AD7280A and its current content or configuration.
Read Register
Write Register
Use this function to write a new value to a certain register of
AD7280A.
SDP Firmware Release info
Provides the SDP board firmware currently in use
Schematic, PCB Layout, Bill of Materials