Wiki

This version is outdated by a newer approved version.DiffThis version (09 Jan 2021 01:02) was approved by Robin Getz.The Previously approved version (18 Jun 2020 03:05) is available.Diff

This is an old revision of the document!


Table of Contents

Evaluation Board for the ADP5051/ADP5053 4-Channel Power Management Unit (PMU) with Supervisory

Features

Wide input voltage range: 4.5 V to 15 V
Full featured evaluation board for the ADP5051/ADP5053
CH1: programmable 1.2 A/2.5 A/4 A buck regulator
CH2: programmable 1.2 A/2.5 A/4 A buck regulator
CH3: 1.2 A sync buck regulator
CH4: 1.2 A sync buck regulator
Standalone operation capability
USB dongle and GUI software support ADP5051 only)
Dedicated enable option for each channel
Mode option to select PSM or FPWM operation
Programmable switching frequency from 250 kHz to 1.4 MHz
Frequency synchronization input or output
Simple device measurements and demonstrable with
Voltage supply
Voltmeter
Ammeter
Load resistors or electrical load
Open-drain processor reset with external adjustable threshold monitoring
Manual reset input

Hardware Requirement

USB-to-I2C dongle: USB-SDP-CABLEZ (The USB-SDP-CABLEZ is not included in the evaluation kit and must be ordered separately. Only one dongle is required in a multiboard cascade setup)

Software Requirement

General Description

This user guide describes the hardware and software for the evaluation of the ADP5051/ADP5053, including detailed schematics and printed circuit board (PCB) layouts.

The ADP5051/ADP5053 evaluation board combines four high performance buck regulators and supervisory in a 48-lead LFCSP package to meet demanding performance and board space requirements. The ADP5051/ADP5053 evaluation board can connect to high input voltages, up to 15 V directly, without any preregulators.

The ADP5051/ADP5053 share a common PCB evaluation board; however, whereas the ADP5051 board can support an external USB dongle connection and GUI software to evaluate the comprehensive functionalities provided by an I2C interface, the ADP5053 has no I2C interface capability. Both the ADP5051 and the ADP5053 operate in the same manner and are available in an adjustable voltage option.

Full details on the devices are provided in the ADP5051/ADP5053 data sheet available from Analog Devices, Inc., and should be consulted in conjunction with this evaluation board user guide.

ADP5051/ADP5053 EVALUATION BOARD

Figure 1.

INSTALLING THE SOFTWARE (ADP5051 ONLY)

Note that the ADP5051 evaluation board can be powered up in standalone operation without the GUI software. Using the GUI software to access the advanced functionality of the ADP5051 product is optional. Before starting the software installation, ensure that the ADP5051 evaluation board is not connected to the USB port of the PC.

INSTALLING LABVIEW

Note that if the PC has LabVIEW™ already installed, this following step is not needed.
The application software is a compiled LabVIEW program, which requires LabVIEW 8.5 or later and a run-time engine installed on the PC. You can download the LabVIEW run-time engine on the National Instrument website. A LabVIEW 8.5 run-time installation is available on the ADP5051 installation CD.

INSTALLING THE ADP5051 GUI SOFTWARE

After installation, it may be necessary to reboot the PC to complete the operation.

1. Launch the Setup.exe file. When the dialog box shown in Figure 2 appears, click Next to continue.

Figure 2. ADP5051 Evaluation Software Setup


2. Click Next to install the files to the default destination folder or click Browse… to choose a different file (see Figure 3).

Figure 3. Choose Destination Location


3. Click Next to install the program (see Figure 4).

Figure 4. Select Program Folder


4. Click Finish to complete the installation (see Figure 5).

Figure 5. Install Shield Wizard Complete


INSTALLING THE ANALOG DEVICES SDP DRIVERS (ADP5051 ONLY)

To install the Analog Devices SDP Drivers, complete the following steps:

1. After installing ADP505x Demo GUI software properly, the installation of the Analog Devices SDP drivers begins.

2. Click Next to install the drivers (see Figure 6).

Figure 6. ADI SDP Drivers Setup Wizard


3. Click Install after verifying the program folder. Ensure that the system environment has enough space (see Figure 7).

Figure 7. Verify the Destination Folder


4. Click Finish to complete the driver installation (see Figure 8).

Figure 8. Driver Installation Complete


5. To verify that the USB driver is installed properly, click Start. Then select Control Panel > System and open the Device Manager (see Figure 9).

Figure 9. Verify Driver Installation


When the USB dongle is connected to a PC port different from the one used to install the driver, the PC device driver may ask you to install the driver again for that specific port. If this happens, repeat the first four steps listed in this section.

USING THE EVALUATION BOARD

POWERING UP THE EVALUATION BOARD

The ADP5051/ADP5053 evaluation board is supplied fully assembled and tested. Before applying power to the evaluation board, follow the procedures in this section.

Enable Jumpers

Each channel has its own enable pin, which must be pulled high to enable that channel (see Table 1). To disable the channel, pull the enable pin low or leave it floating.

The enable control for each regulator has a 0.8 V precision enable threshold, which allows the ADP5051/ADP5053 to be easily sequenced between channels or other input/output supplies. It can also be used as a programmable UVLO input by the resistor divider.

When the external hardware enable pin is high, the CHx_ON enable register setting in the ADP5051 GUI software can be used to power down each channel operation.

Table 1. Channels of the Enable Pins

Channel Pin Enable Jumpers Description
CH1: Buck EN1 J-EN1 0.8 V precision enable
CH2: Buck EN2 J-EN2 0.8 V precision enable
CH3: Buck EN3 J-EN3 0.8 V precision enable
CH4: Buck EN4 J-EN4 0.8 V precision enable

Power Input Jumpers

Each channel has its own power input jumper, which enables support for either a separate input voltage or cascaded options for all channels.

The power input for the buck regulators is 4.5 V to 15 V. Shunt S1, S2, and S3 to allow for easy setup by using all of the same input voltages for the buck regulators.

The power supply for the VDDIO pin in the I2C interface block is 1.7 V to 3.6 V; shunt LK7 to use VDD (3.0 V) as the VDDIO supply. See Table 2 for the power input details.

Table 2. Channels of Power Input Pins

Channel Pin Input Jumper Input Range
CH1: Buck PVIN1 J11 4.5 V to 15 V
CH2: Buck PVIN2 S1 4.5 V to 15 V
CH3: Buck PVIN3 S2 4.5 V to 15 V
CH4: Buck PVIN4 S3 4.5 V to 15 V
VDDIO VDDIO LK7 1.7 V to 3.6 V

Jumper J-SYNC (SYNC/MODE)

The Jumper J-SYNC, as shown in Figure 1, connects the SYNC/MODE pin of the device to either low or high. Shunt the center contact of the J-SYNC jumper (SYNC/MODE) to the left pin header to pull the SYNC/MODE pin high to VREG (5 V) to allow the buck regulators into forced PWM operation. In this setting, use the PSMx_ON register setting in the ADP5051 GUI software to configure individual PSM/FPWM operation for each buck.

Shunt the center contact of the J-SYNC jumper to the right pin header to pull the MODE pin low, which forces the buck regulators to operate in automatic PWM/PSM operation. The PSMx_ON setting in the ADP5051 GUI software is ignored.

Input Power Source

Before connecting the power source to the ADP5051/ADP5053 evaluation boards, ensure that the evaluation board is turned off. If the input power source includes a current meter, use that meter to monitor the input current. Connect the positive terminal of the power source to the PVIN1_4 terminal (J11) on the evaluation board, and connect the negative terminal of the power source to the GND terminal (J12) of the board.

If the power source does not include a current meter, connect a current meter in series with the input source voltage. Connect the positive terminal of the power source to the positive lead (+) of the current meter, connect the negative terminal of the power source to the GND terminal (J12) on the evaluation board, and the connect the negative lead (−) of the current meter to the PVIN1_4 terminal (J11) on the board.

Output Load

Ensure that the board is turned off before connecting the load.

Connect an electronic load or resistor to set the load current. If the load includes an ammeter, or if the current is not measured, connect the load directly to the evaluation board, with the positive (+) load connected to one of the channels. For example, connect Buck 1, J16 (VOUT1), and the negative (−) load connection to J15 (GND).

If an ammeter is used, connect it in series with the load. Connect the positive (+) ammeter terminal to the evaluation board for Buck 1, J16 (VOUT1), connect the negative (−) ammeter terminal to the positive (+) load terminal, and connect the negative (−) load terminal to the evaluation board at J15 (GND).

Input and Output Voltmeters

Measure the input and output voltages with voltmeters. Ensure that the voltmeters are connected to the appropriate evaluation board terminals and not to the load or power sources themselves.

If the voltmeters are not connected directly to the evaluation board, the measured voltages are incorrect due to the voltage drop across the leads and/or connections between the evaluation board, the power source, and/or the load.

Connect the input voltage measuring voltmeter positive terminal (+) to the evaluation board at J11 (PVIN1_4) and connect the input voltage measuring voltmeter negative (−) terminal to the evaluation board at J12(GND). Connect the output voltage measuring voltmeter positive (+) terminal to the evaluation board at J16 (VOUT1) for measuring the output voltage of Buck 1, and connect the output voltage measuring voltmeter negative (−) terminal to the evaluation board at J15 (GND).

Quick Start

Ensure that the software and USB driver are installed as described in the Installing the Software section. Ensure that

  • The power source voltage for the buck regulators (PVIN1, PVIN2, PVIN3, PVIN4) is 4.5 V to 15 V. Shunt the S1, S2, and S3 jumpers to use all of the same input voltages for the buck regulators.
  • Optional for I2C interface evaluation: shunt LK7 to use VDD as the VDDIO supply, and connect the USB dongle to the I2C head jumper in the board.
  • Input the WDI toggle signal, which is required as an evaluation WDI feature.
  • Use the J-EN1, J-EN2, J-EN3, and J-EN4 jumpers to enable or disable the desirable channel.

Figure 10 shows the ADP5051 board connection diagram. The ADP5053 works in a similar manner, but does not have a USB dongle connection.

Figure 10. ADP5051 Board Connection Diagram (USB Dongle is Optional)


When the power source and load are connected to the evaluation board, the board can be powered for operation. If the load is not enabled, enable the load. Verify that it is drawing the proper current and that the output voltage maintains voltage regulation. After the power-up, the following output voltage can be measured:

  • VOUT1 = 1.2 V, supply up to a 4 A output load
  • VOUT2 = 3.3 V, supply up to a 4 A output load
  • VOUT3 = 1.8 V, supply up to a 1.2 A output load
  • VOUT4 = 5.0 V, supply up to a 1.2 A output load
  • VREG = 5.0 V, supply up to a 50 mA output load

ADP5051 GUI SOFTWARE

To run the ADP5051 GUI, click Start > All Programs > Analog Devices ADP505x > ADP505x DEMO GUI-cg. If the program starts correctly and the board is detected, the ADP5051 GUI appears, as shown in Figure 11. The program default settings are as follows:

  • Choose the correct device I2C address. Select WDI Ver 0x4A for the ADP5051/ADP5053.
  • All registers are initialized to default values.
  • Check the I2C status.

Figure 11. ADP5051 GUI Software


MEASURING EVALUATION BOARD PERFORMANCE

Measuring Output Voltage Ripple of the Buck Regulator

To observe the output voltage ripple of Buck 1, place an oscilloscope probe across the output capacitor (COUT_1) with the probe ground lead at the negative (−) capacitor terminal and the probe tip at the positive (+) capacitor terminal. Figure 12 shows the typical output ripple waveform.

Figure 12. Output Ripple, VIN = 12 V, VOUT = 1.2 V, L = 1 μH,
COUT = 47 μF × 2, fSW = 700 kHz, FPWM Mode

Set the oscilloscope to ac, 10 mV/division, and 2 µs/division time base, with the bandwidth set to 20 MHz to avoid noise interference with the measurements. To minimize coupling, shorten the ground loop of the oscilloscope probe.

To effectively measure the output voltage ripple, solder a wire to the negative (−) capacitor terminal and wrap it around the barrel of the probe and connect the tip directly to the positive (+) capacitor terminal, as shown in Figure 13.

Figure 13. Measuring Output Voltage Ripple

Measuring the Switching Waveform of Buck

To observe the switching waveform with an oscilloscope, place the oscilloscope probe tip at the end of the inductor with the probe ground at GND. Set the oscilloscope to dc,
5 V/division, and 1 µs/division time base.

When the SYNC/MODE pin is set to high, the buck regulators operate in forced PWM mode and the PSMx_ON registers in the ADP5051 GUI software can be used to configure individual PSM/FPWM operation for each buck. Typical PWM and PSM switching waveforms are shown in Figure 14 and Figure 15.

When the MODE pin is set to low, the buck regulators operate in power save mode (PSM), improving the light load efficiency.

Figure 14. Typical PSM Mode Waveform, VIN = 12 V, VOUT = 3.3 V, IOUT = 3 A,
fSW = 600 kHz, L = 4.7 μH, COUT = 47 µF × 2, FPWM Mode

Figure 15. Typical FPWM Mode Waveform, VIN = 12 V, VOUT = 3.3 V, IOUT = 3 A,
fSW = 600 kHz, L = 4.7 μH, COUT = 47 µF × 2, FPWM Mode


Measuring the Synchronization Input or Output

To configure the SYNC/MODE pin as the clock output,set the SYNC_OUT bit in ADP5051 GUI software (or by factory fuse). A clock is generated at the SYNC/MODE pin with the frequency equal to the internal frequency set by the RT pin.

When the SYNC/MODE pin is configured as the input, the ADP5051/ADP5053 can be synchronized to an external clock applied to the SYNC/MODE pin. Note that the internal clock set by the RT pin must be programmed close to the external clock.

Measuring Load Regulation of the Buck

Test the load regulation by increasing the load at the output and looking at the change in output voltage. The input voltage must be held constant during this measurement. To minimize voltage drop, use short low resistance wires, especially for loads approaching maximum current. Typical buck load regulation is shown in Figure 16.

Figure 16. Buck Load Regulation


Measuring Line Regulation

To measure line regulation, vary the input voltage and examine the change in the output voltage. Typical buck line regulation is shown in Figure 17.

Figure 17. Buck Line Regulation

Measuring Efficiency of the Buck

Measure the efficiency, η, by comparing the input power with the output power.

η = (V_{OUT} × I_{OUT})/(V_{IN} × I_{IN})

To reduce the effect of IR drops, measure the input and output voltages as near as possible to the input and output capacitors.

Figure 18. Buck1/Buck2 Efficiency, VIN = 12 V, fSW = 600 kHz,
MOSFET = SI7232DN, FPWM and PSM Mode

Measuring Inductor Current

Measure the inductor current by removing one end of the inductor from its pad and connecting a current loop in series. A current probe can be connected to this wire.

Modifying the Board

Setting the Output Voltage of the Bucks (CH1 to CH4)

The buck output voltage is set through external resistor dividers, shown in Figure 19 for Buck 1. Optionally, the output voltage can be factory programmed to default values, as indicated in the ADP5051/ADP5053 data sheet. FB1 must be connected to the top of the capacitor on VOUT1 by placing a 0 Ω resistor on RTOP. In an output adjustable version, the equation for the output voltage setting is

V_{OUT} = V_{REF} × (1 + R_{TOP}/R_{BOT})

The VREF voltage (FB1, FB2, FB3, FB4) for the buck regulators is 0.800 V in the adjustable version.

Figure 19. Buck 1 External Output Voltage Setting

When the output voltage of the bucks are changed, the values of inductors, output capacitors, and compensation networks might, likewise, need to be recalculated and changed for stable operation. See the ADP5051/ADP5053 data sheet for more details on external components selection.

Setting the POR Threshold Voltage

The monitoring voltage can be set through external resistor dividers, as well (see Figure 20). The equation for the monitoring voltage is

V_{OUTx} = V_{VTH} × (1 + R_{TOP}/R_{BOT})

The voltage of VTH is 0.500 V.

Figure 20. Monitoring Voltage Threshold Setting

External Resistor Divider Setting for Bucks and POR

The ADP5051/ADP5053 evaluation boards are supplied with the resistor divider for a target output voltage. Varying the resistor values of the resistor divider networks varies the output voltage accordingly. Table 3 shows the external resistor divider for each channel.

Table 3. External Resistor Dividers in Each Channel

Resistor Divider Buck 1 Buck 2 Buck 3 Buck 4
RTOP R2 R4 R6 R5
RBOT R28 R29 R31 R30

The POR function, by default, monitors the Channel 2 output voltage; optionally, another channel can be selected using VOUT1, VOUT3, or VOUT4. Table 4 lists the external resistor for each channel.

Table 4. External Resistor Dividers for VTH Setting

Resistor Divider Buck 1 Buck 2 Buck 3 Buck 4
RTOP R62 R61 R60 R59
RBOT R13 R13 R13 R13

Changing the Switching Frequency

The switching frequency of theADP5051/ADP5053 on the evaluation board is programmed at 650 kHz. To change the switching frequency, replace the R3 resistor at the RT pin with a different value, as shown in Figure 21.

Figure 21. Switching Frequency vs. RT Resistor

There is a frequency-halved bit (FREQ1 and FREQ3 in Register 7) for Channel 1 and Channel 3, respectively. Each bit can be used to program its switching frequency to be half that of the master switching frequency, which is set by the RT pin.

When the switching frequency is changed, the values of inductors, the output capacitors, and the compensation networks must, likewise, be recalculated and changed for stable operation. Refer to the ADP5051/ADP5053 data sheet for more details on external components selection.

Changing the Peak Current-Limit Threshold in Channel 1/Channel 2

The peak current limit of the ADP5051/ADP5053 evaluation board in Channel 1 and Channel 2 is set to 6.4 A. To change the peak current limit threshold, replace the R8 resistor for Channel 1 (R7 for Channel 2) with a different value, as shown in Table 5. The programmable current-limit threshold feature allows for the use of a small size inductor for low current applications.

Table 5. Load Capability Setting on Channel 1

RILIM1/RILIM2 IOUT in Channel 1/Channel 2
Floating 2.5 A, with 4.4 A typical peak current limit
47 kΩ 1.2 A, with 2.6 A typical peak current limit
22 kΩ 4.0 A, with 6.4 A typical peak current limit

Changing the Soft Start Time

The soft start time of the ADP5051/ADP5053 on the evaluation board is programmed at 2 ms for the four buck regulators. To change the soft start time, replace the R39 and R16 resistors for Channel 1 and Channel 2 (R40 and R18 for Channel 3 and Channel 4) with a different value, as shown in Table 6 (note that N/A means not applicable).

Table 6. Softstart Time Configuration by SS12/SS34 Pins

RTOP RBOTTOM SS12 Pin SS34 Pin
(kΩ) (kΩ) CH1 CH2 CH3 CH4
0 N/A 2 ms 2 ms 2 ms 2 ms
100 600 2 ms Parallel 2 ms 4 ms
200 500 2 ms 8 ms 2 ms 8 ms
300 400 4 ms 2 ms 4 ms 2 ms
400 300 4 ms 4 ms 4 ms 4 ms
500 200 8 ms 2 ms 4 ms 8 ms
600 100 8 ms Parallel 8 ms 2 ms
N/A 0 8 ms 8 ms 8 ms 8 ms

Changing Channel 1/Channel 2 to a 2-Phase Parallel Output

Channel 1 and Channel 2 are programmed as individual outputs on the ADP5051/ADP5053 evaluation boards. To configure Channel 1/Channel 2 as a 2-phase parallel output operation, the following steps are required:

  1. Short the jumper, S4.
  2. Change R39 = 100 kΩ and R16 = 600 kΩ (or R39 = 600 kΩ and R16 = 100 kΩ) in the SS12 pin setting.
  3. Remove R17 and C8 from the COMP2 pin.
  4. Remove R4, and replace R29 with 0 Ω on the FB2 pin.
  5. Shunt the J-EN2 jumper to low.
  6. Use the FB1 pin (R2 and R28) to set the output voltage.
  7. Use J-EN1 (EN1 pin) to enable or disable the regulator.

During the parallel configuration, the input voltage and the current-limit threshold for both channels should be the same, and FPWM mode operation on both Channel 1 and Channel 2 are recommended. See the ADP5051/ADP5053 data sheet for details regarding 2-phase parallel output.

Changing the Phase Shift (0°, 90°, 180°, 270°) in the Buck Regulators

On the ADP5051/ADP5053 evaluation board, the phase shift is 180° between Channel 1 and Channel 2, and 180° between Channel 3 and Channel 4. Channel 1 and Channel 3 operate in 0° phase shift.

With the ADP5050 only, the phase shift can be programmed at 0°, 90°, 180°, or 270° from Channel 2 to Channel 4 with reference to Channel 1 via PHASE2, PHASE3, and PHASE4 in the ADP5051 GUI software. See the ADP5051/ADP5053 data sheet for details regarding 2-phase parallel output.

Changing the Power-Good (PWRGD) Output Options

On the ADP5051/ADP5053 evaluation board, the PWRGD output becomes active high when the selective regulator is under normal operation. The PWRGD hardware output is logically AND'ed of an internal unmasked PWRGD signal.

With the ADP5051 only, each immediate PWRGD signal in each buck can be read back by the PWRGDx bit in the ADP5051 GUI software. The only desirable channels from Channel 1 to Channel 4 can be configured by factory fuse or I2C interface. Use the ADP5051 GUI software to configure MASK_CHx in Register 0x08 to obtain a desirable PWRGD output signal.

Changing the Interrupt Output Options

With the ADP5051 only, use the overline{INT} pin for the fault condition warning. During normal operation, the interrupt output is pulled high. When any fault occurs, the ADP5050 pulls the overline{INT} pin low to raise the fault warning to the I2C host. There are six interrupt sources available in the ADP5051, as shown in Table 6.

Table 6. Interrupt Options in ADP5051

Name Description
PWRG1_INT Power-good failure detected on Channel 1
PWRG2_INT Power-good failure detected on Channel 2
PWRG3_INT Power-good failure detected on Channel 3
PWRG4_INT Power-good failure detected on Channel 4
LVIN_INT PVIN1 voltage drops below the specified threshold (adjustable in Register 7)
TEMP_INT Junction temperature rises above the specified threshold (adjustable in Register 7)
MR_INT The overline{MR} button has been pressed

The interrupt (if any) that appears on the overline{INT} pin is determined by the mask bits mapped in Register INT_MASK. To clear an interrupt, write 1b to the detected bit in INT_STATUS, or reset the device using UVLO.

Reading the interrupt or writing a 0b has no effect.

Enabling the Overheat Detection (ADP5051 Only)

In addition to the thermal shutdown protection, the ADP5051 has another overheat warning function, which compares the junction temperature against the specified overheat threshold: 105°C, 115°C, or 125°(adjustable in Register 8, TEMP_TH).

Unlike thermal shutdown, the overheat warning function only sends out a warning signal without any shutdown. When the junction temperature rises above the threshold, the status bit, TEMP_INT, goes high. To clear the TEMP_INT status bit, write 1b to the status bit. The TEMP_INT bit status is latched until the bit is cleared.

Use the ADP5051 GUI software to set the TEMP_TH register to enable the overheat feature. Configure TEMP_INT to source this overheat fault into the overline{INT} pin.

Enabling the Low Input Voltage Detection (ADP5051 Only)

In addition to the undervoltage lockout (UVLO), the ADP5051 includes a low input voltage detection circuit (to monitor PVIN1 only) that compares the input voltage against the specified voltage threshold, which is adjustable from 4.2 V to 11.2 V with 0.5 V steps in Register 8, TH_CFG.

Unlike the UVLO shutdown, the low input voltage warning function only sends out a warning signal without any shutdown. When the input voltage drops below the threshold, the status bit, LVIN_INT, goes high. To clear the LVIN_INT status bit, write 1b to the status bit. The LVIN_INT bit status is latched until the bit is cleared.

Use the ADP5051 GUI software to set the LVIN_TH bit to enable the low input voltage detection feature. Configure LVIN_INT to source the low input fault into the nINT pin.

Enabling the Dynamic Voltage Scaling (ADP5051 Only)

The ADP5051 provides a dynamic voltage scaling (DVS) function for Channel 1 and Channel 4, and those outputs can be real-time settings via I2C interface. Because only fixed output options support the DVS function, FB1 and FB4 must be connected to the output by placing a 0 Ω resistor on RTOP.

Use the ADP5051 GUI software to set DVSx-INTVAL and enable DVSx-ON in Register 0x05. Then, change the different VID options in the CHx VOUTx register to obtain a real-time output voltage step up or step down.

Note that to avoid rapid output voltage changes to the next target value that result in abnormal problems, such as PWRGD failure, OVP latch-off, or hiccup, enable the DVS function prior to setting VID.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 22. Evaluation Board Schematic of the ADP5051/ADP5053 Evaluation Board


Figure 23. Top Layer, Recommended Layout for the ADP5051/ADP5053 Evaluation Board


Figure 24. Second Layer, Recommended Layout for the ADP5050/ADP5052 Evaluation Board


Figure 25. Third Layer, Recommended Layout for the ADP5051/ADP5053 Evaluation Board


Figure 26. Bottom Layer, Recommended Layout for the ADP5051/ADP5053 Evaluation Board

Ordering Information

Bill of Materials

Note that connection points listed in the Reference Designator column match the imprint on the evaluation board. When these refer to pin connections, the imprint may not match the pin name exactly, for example, NMR rather than overline{MR}.

Table 7. Bill of Materials

Qty. Reference Designator Description Manufacturer Part Number
1 U1 Micro PMU Analog Devices ADP5051 or ADP5053
1 U2 Dual MOSFETs, 16.4 mΩ Vishay Si7232DN
4 CIN_1, CIN_2, CIN_3, CIN_4 Capacitor, MLCC, 10 µF, 25 V, 1206 Murata GRM31CR61E106KA12L
4 COUT_2, COUT_3, COUT_4, COUT_6 Capacitor, MLCC, 47 µF, 6.3 V, 0805 Murata GRM21BR60J476ME15
2 COUT_9, COUT_10 Capacitor, MLCC, 22 µF, 6.3 V, 0805 T-Y LMK212BJ226MG-T
1 L1 Inductor, 1.0 µH, 11.2 A Toko FDV0530-1R0M
1 L2 Inductor, 2.2 µH, 7.1 A Toko FDV0530-2R2M
1 L3 Inductor, 4.7 µH, 2.7 A Coilcraft XAL4020-472
1 L4 Inductor, 10 µH, 2.3 A Taiyo Yuden NR5040T-100M
5 C1, C3, C4, C5, C13 Capacitor, MLCC, 0.1 µF, 16 V, 0402 Murata GRM155R71C104KA88D
2 C2, C14 Capacitor, MLCC, 1 µF, 6.3 V, 0402 Murata GRM155R60J105KE19D
2 C7, C8 Capacitor, MLCC, 560 pF, 50 V, 0402 Murata GRM155R71H561KA01D
2 C9, C10 Capacitor, MLCC, 2.7 nF, 50 V, 0402 Murata GRM2165C1H272JA01D
1 R2 Resistor, 4.99 kΩ, 1%, 0402 Panasonic ERJ-2RKF4991X
1 R3 Resistor, 32.4 kΩ, 1%, 0402 Panasonic ERJ-2RKF2322X
1 R4 Resistor, 31.6 kΩ, 1%, 0402 Vishay CRCW040231K6F
1 R5 Resistor, 52.3 kΩ, 1%, 0402 Vishay CRCW040252K3F
1 R6 Resistor, 12.4 kΩ, 1%, 0402 Panasonic ERJ-2RKF1242X
2 R7, R8 Resistor, 22 kΩ, 1%, 0402 Panasonic ERJ-2GEJ223X
2 R12, R17 Resistor, 20 kΩ, 1%, 0402 Panasonic ERJ-2RKF2002X
11 R13, R19, R24 to R26, R28 to R31, R58, R61 Resistor, 10 kΩ, 1%, 0402 Panasonic ERJ-2RKF1002X
1 R15 Resistor, 10 kΩ, 1%, 0603 Vishay CRCW060310K0F
2R39, R40Resistor, 0 kΩ, 1%, 0402PanasonicERJ-2GE0R00X
1 R20 Resistor, 24 kΩ, 1%, 0402 Panasonic ERJ-2RKF2402
3 D1, D2, D3 LED, 0603 Panasonic LNJ208R8ARA
6 J-EN1, J-EN2, J-EN3, J-EN4, J-SYNC, JP2 3-Pin Header Samtec TSW-103-08-G-S
16 J11, J12, J15 to J22, LK7, LK8, S1, S2, S3, S4 2-Pin Header Samtec TSW-150-07-T-S
1SW1Switcher buttonMULTICOMPMC32829
10 TP9, TP10, TP11, nINT, VREG, VDDIO, PWRGD, WDI, NMR, NRSTO Test Point, 1206 MAC8 HK-1-G
10 R16, R18, R53 to R57, R59, R60, R62 No assembly No assembly No assembly
6 COUT_1, COUT_7, COUT_8 COUT_11, COUT_12, COUT_13 No assembly No assembly No assembly
Resource Description
ADP50514-channel integrated power solution with quad buck regulators and POR/WDI with an I2C interface
ADP50534-channel integrated power solution with quad buck regulators and POR/WDI
resources/eval/adp5051-adp5053-4-channel-pmu.1609707866.txt.gz · Last modified: 03 Jan 2021 22:04 by Robin Getz