Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
resources:eval:ad6684-500ebz [25 Feb 2019 14:54] – [AD6684 Evaluation Board] Alan Yuresources:eval:ad6684-500ebz [14 Jan 2021 05:11] (current) – user interwiki links Robin Getz
Line 14: Line 14:
 //[[adi>AD6684|AD6684]] Evaluation Board (new version)//</WRAP> //[[adi>AD6684|AD6684]] Evaluation Board (new version)//</WRAP>
 ===== Typical Measurement Setup ===== ===== Typical Measurement Setup =====
-The [[adi>AD6684|AD6684-500EBZ]] can be evaluated using the [[ads7-v2|ADS7-V2EBZ]] FPGA data capture board. The figure below shows the [[adi>AD6684|AD6684-500EBZ]] connected to the [[ads7-v2|ADS7-V2EBZ]]. +The [[adi>AD6684|AD6684-500EBZ]] can be evaluated using the [[ads7-v2|ADS7-V2EBZ]] FPGA data capture board. The figure below shows the [[adi>AD6684|AD6684-500EBZ]] connected to the [[ads7-v2|ADS7-V2EBZ]]. If using the old version of the board, refer to the first image for connections, otherwise if using the new version of the board, refer to the second image.
 {{ :resources:eval:ad9694_connection.png?direct&800 |}}<WRAP centeralign> {{ :resources:eval:ad9694_connection.png?direct&800 |}}<WRAP centeralign>
 //Evaluation Board Connection—[[adi>AD6684|AD6684-500EBZ]]// //Evaluation Board Connection—[[adi>AD6684|AD6684-500EBZ]]//
 +</WRAP>
 +{{ :resources:eval:ad9694_connection_new_board.jpg?direct&800 |}}<WRAP centeralign>
 +//(New) Evaluation Board Connection—[[adi>AD6684|AD6684-500EBZ]]//
 </WRAP> </WRAP>
 ===== Features ===== ===== Features =====
Line 35: Line 38:
 ===== Software Needed ===== ===== Software Needed =====
   * VisualAnalog [[ftp://ftp.analog.com/pub/HSSP_SW/VisualAnalog/VisualAnalog_Setup.exe]]      * VisualAnalog [[ftp://ftp.analog.com/pub/HSSP_SW/VisualAnalog/VisualAnalog_Setup.exe]]   
-  * ACE [[https://wiki.analog.com/resources/tools-software/ace]]+  * ACE [[/resources/tools-software/ace]]
 ===== Design and Integration Files ===== ===== Design and Integration Files =====
-  *[[https://wiki.analog.com/_media/eval/9694_board_files_ce01.zip|AD9694CE01A schematic, BOM, layout files]]+  * {{ :eval:9694_board_files_ce04.zip |AD9694CE04A schematic, BOM, layout files}}
 ===== Equipment Needed ===== ===== Equipment Needed =====
   * Analog signal source and antialiasing filter   * Analog signal source and antialiasing filter
Line 58: Line 61:
   - The [[ads7-v2|ADS7-V2EBZ]] will appear in the Device Manager.{{ :resources:eval:9694_ads7v2_devmgr.png?nolink&300 |}}<WRAP centeralign>//Device Manager showing [[ads7-v2|ADS7-V2EBZ]]//</WRAP>   - The [[ads7-v2|ADS7-V2EBZ]] will appear in the Device Manager.{{ :resources:eval:9694_ads7v2_devmgr.png?nolink&300 |}}<WRAP centeralign>//Device Manager showing [[ads7-v2|ADS7-V2EBZ]]//</WRAP>
   - If the Device Manager does not show the [[ads7-v2|ADS7-V2EBZ]] listed, unplug all USB devices from the PC, uninstall and re-install SPIController and VisualAnalog and restart the hardware setup from step 1.   - If the Device Manager does not show the [[ads7-v2|ADS7-V2EBZ]] listed, unplug all USB devices from the PC, uninstall and re-install SPIController and VisualAnalog and restart the hardware setup from step 1.
-  - On the ADC evaluation board, provide a clean, low jitter 1GHz clock source to connector J203 and set the amplitude to 14dBm. This is the ADC Sample Clock. +  - On the ADC evaluation board, provide a clean, low jitter 1GHz clock source to connector J204 and set the amplitude to 14dBm. This is the ADC Sample Clock. 
-  - On the ADC evaluation board, provide a clean, low jitter clock source to connector J201 and set the amplitude to 10dBm. This is the Reference Clock for the gigabit transceivers in the FPGA. The REFCLK frequency can be calculated using the following empirical formulae:<WRAP centeralign> <m> LaneLineRate=M*Nprime*(10/8)*f_{out}/L </m>bps/lane, where </WRAP><WRAP centeralign> <m> f_{out} = f_{ADC SAMPLE CLOCK}/DecimationRatio, Nprime=8 or 16 </m>//(Default Nprime = 16)//</WRAP><WRAP centeralign> <m> REFCLK = LaneLineRate/20 </m></WRAP> +  - On the [[ads7-v2|ADS7-V2EBZ]] data capture board, provide a clean, low jitter clock source to connector J3 and set the amplitude to 10dBm. This is the Reference Clock for the gigabit transceivers in the FPGA. The REFCLK frequency can be calculated using the following empirical formulae:<WRAP centeralign> <m> LaneLineRate=M*Nprime*(10/8)*f_{out}/L </m>bps/lane, where </WRAP><WRAP centeralign> <m> f_{out} = f_{ADC SAMPLE CLOCK}/DecimationRatio, Nprime=8 or 16 </m>//(Default Nprime = 16)//</WRAP><WRAP centeralign> <m> REFCLK = LaneLineRate/20 </m></WRAP> 
-  - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel A to J100. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.) If providing an input clock with a divide-by-1 setting in the AD6684 make sure the clock source has a 50% duty cycle.  For optimum SNR performance use the clock divider with a divide ratio of 2 or higher to minimize the impact of the phase noise from the input clock source.+  - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel A to J101. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.) If providing an input clock with a divide-by-1 setting in the AD6684 make sure the clock source has a 50% duty cycle.  For optimum SNR performance use the clock divider with a divide ratio of 2 or higher to minimize the impact of the phase noise from the input clock source.
   - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel B to J102. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)   - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel B to J102. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)
   - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel C to J104. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)   - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel C to J104. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)
-  - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel D to J106. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)+  - On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel D to J107. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)
 ==== Visual Analog Setup ==== ==== Visual Analog Setup ====
   - Click Start <m>right</m> All Programs <m>right</m> Analog Devices <m>right</m> VisualAnalog <m>right</m> VisualAnalog   - Click Start <m>right</m> All Programs <m>right</m> Analog Devices <m>right</m> VisualAnalog <m>right</m> VisualAnalog
Line 70: Line 73:
   - Click the **General** button in the **ADC Data Capture Settings** block. On the **General** tab make sure the clock frequency is set to 2x the input clock. For example, if the input clock to the AD6684 is 368.64 MHz then set the **Clock Frequency (MHz)** to 737.28 MHz. The FFT capture length may be changed to 131072 (128k) or 262144 (256k) per channel. The ADS7-V2 FPGA software supports up to 2M FFT capture (1M per channel). {{ :resources:eval:9694_data_capture_settings_general.png?nolink |}} <WRAP centeralign>//Changing the ADC Capture Settings//</WRAP>   - Click the **General** button in the **ADC Data Capture Settings** block. On the **General** tab make sure the clock frequency is set to 2x the input clock. For example, if the input clock to the AD6684 is 368.64 MHz then set the **Clock Frequency (MHz)** to 737.28 MHz. The FFT capture length may be changed to 131072 (128k) or 262144 (256k) per channel. The ADS7-V2 FPGA software supports up to 2M FFT capture (1M per channel). {{ :resources:eval:9694_data_capture_settings_general.png?nolink |}} <WRAP centeralign>//Changing the ADC Capture Settings//</WRAP>
   - If VisualAnalog opens with a collapsed view, click on the “Expand Display” icon (see figure 5){{ :resources:eval:fig4_expand_display.png?nolink |}}<WRAP centeralign>//Expanding Display in VA//</WRAP>   - If VisualAnalog opens with a collapsed view, click on the “Expand Display” icon (see figure 5){{ :resources:eval:fig4_expand_display.png?nolink |}}<WRAP centeralign>//Expanding Display in VA//</WRAP>
-  - On the **Device** tab. Make sure that **Enable Alternate REFCLK** option is unchecked.+  - On the **Device** tab. Make sure that **Enable Alternate REFCLK** option is checked.
   - Click **OK**   - Click **OK**
 ==== ACE Setup ==== ==== ACE Setup ====
   - Click Start <m>right</m> All Programs <m>right</m> Analog Devices <m>right</m> ACE <m>right</m> ACE   - Click Start <m>right</m> All Programs <m>right</m> Analog Devices <m>right</m> ACE <m>right</m> ACE
   - Once ACE opens the AD6684 evaluation board should appear in the **Attached Hardware** section. {{ :resources:eval:6684_ace_start.png?nolink |}}<WRAP centeralign>//ACE Attached Hardware: AD6684 //</WRAP>   - Once ACE opens the AD6684 evaluation board should appear in the **Attached Hardware** section. {{ :resources:eval:6684_ace_start.png?nolink |}}<WRAP centeralign>//ACE Attached Hardware: AD6684 //</WRAP>
-  - Double click on the **AD6684 Eval Board** icon which will open up the Initial Configuration wizard. The default conditions for the AD668 are NSR mode with a sample clock of 500 MHz. From here both pairs of ADC channels (Pair AB and Pair CD) can be configured simultaneously.  **NOTE:It is important to remember that the AD6684 functions as two dual ADCs.** {{ :resources:eval:6684_ace_initial_config.png?nolink |}}<WRAP centeralign>//ACE - AD6684 Initial Configuration Wizard//</WRAP>+  - Double click on the **AD6684 Eval Board** icon which will open up the Initial Configuration wizard. The default conditions for the AD6684 are NSR mode with a sample clock of 500 MHz. From here both pairs of ADC channels (Pair AB and Pair CD) can be configured simultaneously.  **NOTE: It is important to remember that the AD6684 functions as two dual ADCs.** {{ :resources:eval:6684_ace_initial_config.png?nolink |}}<WRAP centeralign>//ACE - AD6684 Initial Configuration Wizard//</WRAP>
   - Prior to configuring any modes in the AD6684 double click on the **AD6684** icon to bring up the device view.  From the device view click on the **Read All** icon to read the SPI settings from the device.  Do this for each pair by selecting one pair at a time and then clicking the **Read All** icon.{{ :resources:eval:6684_ace_device_view_nsr_read_all.png?nolink |}}<WRAP centeralign>//ACE - AD6684 Initial Configuration Wizard//</WRAP>   - Prior to configuring any modes in the AD6684 double click on the **AD6684** icon to bring up the device view.  From the device view click on the **Read All** icon to read the SPI settings from the device.  Do this for each pair by selecting one pair at a time and then clicking the **Read All** icon.{{ :resources:eval:6684_ace_device_view_nsr_read_all.png?nolink |}}<WRAP centeralign>//ACE - AD6684 Initial Configuration Wizard//</WRAP>
   - From the the **Initial Configuration Wizard** the clock frequency, chip application mode (per pair), DDC inputs and outputs, and the JESD204B settings can be quickly configured. The default conditions are:   - From the the **Initial Configuration Wizard** the clock frequency, chip application mode (per pair), DDC inputs and outputs, and the JESD204B settings can be quickly configured. The default conditions are:
resources/eval/ad6684-500ebz.1551102885.txt.gz · Last modified: 25 Feb 2019 14:54 by Alan Yu