
Step 1: Create a CCES plugin project

Open CCES. In the menu bar, click File->New->CrossCore Project. Input project name, for example,

Multi_tab_Delay, in Project Name. Users could designate any project directory in Location. Click Next.

Choose SHARC in Processor family at the left column, and then select ADSP-SC589 in Processor type at the

right column, and select 1.0 in Silicon revision. Please note users should choose processor and silicon

revision that comply with hardware. Click Next.

Uncheck Create a project for core 0 and Create a project for core 2. Because we assume that the whole

audio module only runs on a single Sharc core, either Sharc core 1 or Sharc core 2.

Click Configure Project. Uncheck all Recommended Add-ins, Device Drivers and System Services, Software

Modules, etc. Click OK and come back to the previous dialog window. Click Finish. Then you should be able

to see a project named “Biquad_Core1” in the CCES Project Explorer window.

In the CCES menu bar, click Project->Build Configurations->Set Active->Release. The Release Build makes

the project use release version libraries and no debug information included.

In the CCES menu bar, click Project-> Properties. In the left column of the dialogue window, select C/C++

Build->Settings, then select Static Library in the tab Build Artifact. Click OK.

Copy the file, adi_ss_extmod.h, from “C:\Analog Devices\SoftwareModules\SigmaStudioForSHARC-SH-

Rel3.9.0\Host\Include" to the project src folder. Then you should see it in the CCES Project Explorer

window.

Open “Biquad_Core1.c” and add “#include "adi_ss_extmod.h"”. The header file includes necessary Sigma

Studio related declarations. After that, remove main function, which is not used in the future.

Step 2: Create wrapper functions and develop algorithms

SigmaStudio modules can be of two types: Modules supporting sample/stream processing and

Modules supporting block processing. This instruction will describe how to create plugins for block

processing. The sample based processing uses a similar approach but different wrapper functions and

arguments.

The entry-point function must have a prefix ‘BPROCESS_’ to indicate that it is a block processing Plug-In

function for SigmaStudio. Sub-functions in the source file which are referenced only from the main Plug-

In function or other sub-functions need not follow any convention. The general prototype of a block

processing Plug-In entry-point function is as shown below.

void BPROCESS_<algorithm_name> (SSBlockAlgo* pBlockAlgo)

In addition to the process function, block Algorithms can also have an initialization function.

Initialization functions are used to initialize the Module in case of decoders and 3rd party post

processing Modules. The function name must have the prefix ‘INIT_’ to indicate that it is the

initialization function of the Module. The general prototype of a block processing Plug-In

initialization function is as shown below.

void INIT_<algorithm_name> (SSBlockAlgo* pBlockAlgo)

Create two functions in “Biquad_Core1.c”, void BPROCESS_Biquad (SSBlockAlgo* pBlkAlgoInfo) and void

INIT_Biquad (SSBlockAlgo* pBlkAlgoInfo), in compliance with previous requirements.

The struct, SSBlockAlgo, is the interface between Sigma Studio libraries, which is a part of Sigma Studio

framework/firmware and runs on Sharc cores, and the custom audio algorithms, as shown below.

typedef struct _SSBlockAlgo

{
 int32_t nInputs; /* Number of input pins */
 int32_t nOutputs; /* Number of output pins */
 Block *pInputs; /* Pointer to array of block i/o mem structure */
 Block *pOutputs; /* Pointer to array of block i/o mem structure */

 int32_t nGrowth; /* Indicates growth count */
 int32_t nGrowthB; /* Secondary growth count */

 void *pParam; /* Pointer to parameter memory */
 float32_t *pState; /* Pointer to state memory */
 float32_t *pScratchDM; /* Pointer to scratch in DM memory */
 float32_t *pScratchPM; /* Pointer to scratch in PM memory */
 float32_t *pStateB; /* Pointer to state memory B */
 float32_t *pStateC; /* Pointer to state memory C */
 float32_t *pExtPreState; /* Pointer to extended precision state memory */
 int32_t *pExtSymbols; /* Pointer to symbol address table */
 float32_t *pSharedMem; /* Pointer to shared memory buffer in L2 */
} SSBlockAlgo;

The complete algorithm function is shown below.

void BPROCESS_Multi_Tap_Delay (SSBlockAlgo* pBlkAlgoInfo){

 float32_t *params = (float32_t*)(pBlkAlgoInfo->pParam);
 int32_t nDelayLineSize = (int32_t) (params[0]);

 int32_t WritePos = (int32_t)pBlkAlgoInfo->pState[0];

 float32_t *pInput = pBlkAlgoInfo->pInputs[0].pSamples;
 int32_t nBlockSize = pBlkAlgoInfo->pInputs[0].pBlockProperties->nBlockSize;

 int32_t RepCount = pBlkAlgoInfo->nGrowth;

 nDelayLineSize += nBlockSize;

 float32_t *DelayLine = pBlkAlgoInfo->pStateC;

 for(int32_t loopcount = 0;loopcount<nBlockSize;loopcount++, WritePos++){
 DelayLine[WritePos%nDelayLineSize] = pInput[loopcount];
 }

 if (WritePos>=nDelayLineSize)
 WritePos-=nDelayLineSize;

 pBlkAlgoInfo->pState[0] = (float32_t) WritePos;

 for(int32_t index = 0; index < RepCount; index++){

 int32_t tap = (int32_t) pBlkAlgoInfo->pInputs[index+1].pSamples[0];

 if (tap > nDelayLineSize-nBlockSize)
 tap = nDelayLineSize-nBlockSize;

 int32_t ReadPos = WritePos - nBlockSize - tap;
 if (ReadPos<0)
 ReadPos += nDelayLineSize;

 float32_t *pOutput= pBlkAlgoInfo->pOutputs[index].pSamples;

 for(int32_t loopcount = 0;loopcount<nBlockSize;loopcount++, ReadPos++){
 pOutput[loopcount] = DelayLine[ReadPos%nDelayLineSize];
 }
 }

}

Step 3: Create XML file

The Module XML file is an input to the Algorithm Designer and contains the source definitions for the

Module which includes name and path of the module binary, parameter details, pin details etc. Each

XML can contain Module source definitions for one or more Modules. The following items are included

in the source definition.

 Name, path and target processor of DLBs of the Module (ADSP-SC5xx).

 List and details of all the runtime parameters of the Module.

 Details of the input and output pins.

The following is an example of multi_tap_delay module.

The delay module has one parameter for users to control, which is delay line size. Delay tabs are wired

into the module as input pins that have type of “control”. Please note the sequence of parameters in the

XML determines the sequence in the parameter buffer that is passed to the wrapper function. So does

the input/output pins (buffers) sequence in the XML file.

Step 4: Design graphic user interface

Algorithm Designer, a component of Sigma Studio, is used in integrating externally developed Algorithms.

In the Algorithm Designer, users design controllable interface that connects to the dlb file generated in

the previous step. Once the design is finalized, Algorithm Designer generates DLLs (Dynamic Link Libraries)

which can be used by Sigma Studio for SHARC for redistributing the Plug-In module.

Open Sigma Studio and Click Action->Launch Algorithm Designer in the menu bar. In the upper-left

window, External Modules, click Load Source to load in Multi tap delay xml file.

In the upper-middle window, Design Form, drag and drop in the widget, Numeric UpDown, from the upper

right window, Toolbox. Then users could modify the widget properties in upper right most window,

Properties. In order to match actual maximum size in processor memory, we set maximum to 10000,

minimum to 0 and value to 5000 in the Properties.

Click Multi_Tap_Delay in Modules, then set pin names to “Input Signal”, “Delay Tap”, and “Delayed Input”

accordingly. Their sequence is derived from the XML file.

In the lower-left window, Parameter Control->Runtime Parameters, add a variable, and rename it “size”,

in Variable Control. We put 0, 10000, 1 and 5000 in Min, Max, Step and Value respectively.

The next step is to connect the “Numeric UpDown” widget to the created variable “size”. Click mouse right

button on the “Numeric UpDown” widget in the Design Form. Choose Assign and you should see a similar

window shown below. Set Control Action to CheckedChanged and Run-Time Parameter to the variable,

enable. Click Apply.

To connect the widget to the parameter “DelayCount” in the dlb file, in the lower-left window, Parameter

Control->Default Parameters, put in the variable “size”, in Formula / Static Value, as shown below.

The custom module requires State and Scratch memory in execution. Users should calculate memory size

based on actual needs. The delay example demands two variables for storing the write and read pointers,

which is allocated in State memory and multiple local variables, which is allocated in Scratch memory, as

shown below. The allocated memory must be equal or greater than the actual needed memory. The State

C memory locates on external memory and will be used for hosting delay line buffer. Its size need to be

equal or greater than the maximum value 10000 we put in the widget.

There are a few general rules for memory allocation:

 All global variables/buffers/tables accessed from an Algorithm are shared across instances of all

the Algorithms inserted in the schematic.

 Code and data can be placed in any section.

 Only extended precision state memory is supported. Tables or parameters cannot be in extended

precision.

 Extended precision access must be cleared at the beginning and restored before exiting if the

Plug-In uses either State B or State C memory buffers. This is because Applications may place the

32-bit state memory buffers in the same block as the Extended Precision state memory buffer.

 Since the input buffers of a Plug-In can be used, with the help of a T-connector, by many

subsequent Modules in a Schematic, care should be taken to preserve the input buffers and to

avoid overwriting of these buffers.

 If there are 2 functions with the same name defined in a single file, the linker gives a “Multiply

defined symbol” error when the schematic which uses the function is link-compile-downloaded.

If the functions with same name are defined in different files, the linker doesn’t throw any error

during the schematic compilation and linking. It uses whichever function definition it finds first

during linking. Hence, it is advisable to use unique function names if it is not intended for the

functions to be shared across modules or with the target application.

In addition, users should provide some basic information about the custom algorithms, in the lower-right

window, Settings, as shown below. Please note Tree Toolbox Category decides where to find the custom

algorithm module in Sigma Studio Toolbox.

This module is created with one input channel, one delay control tab and one output channel. If we

allow the module to grow more channels, we should configure it in “Growth & Add Settings”, as shown

below. The number of delay control taps and delay outputs can go up as many as four pairs or down as

few as one pair.

Step 5: Generate Dynamic Link Libraries and Load in Sigma Studio

In the Algorithm Designer menu bar, click Action->Generate Assembly, to generate the dll file. In the

Sigma Studio menu bar, click Tools->Add-Ins Browser. In the browser window, click Add DLL icon to add

the new dll file, as shown below.

After creating a new SC-58x project in Sigma Studio, the new module could be seen in the Tree Toolbox,

ADSP-SC58x, Custom Algorithms, as shown below.

