

LTspice User Guide – AD8460 Model

Tim Green Principal Engineer, Product Applications PAG (Precision Amplifiers Group) 10/19/2023

110 V High Voltage, 1 A High Current,

Arbitrary Waveform Generator with Integrated 14-Bit High Speed DAC

Figure 1. Simplified Functional Block Diagram

ANALOG

AHEAD OF WHAT'S POSSIBLET

FVICES

Overview

- All LTspice schematics referenced in this presentation are available in the zip folder AD8460 LTspice.zip
- Keep all files in the same folder and run the LTspice ".asc" files out of that respective folder, if you want post-simulation plots to be prepopulated with key curves.
- Where LTspice schematics are used in this presentation, the corresponding LTspice ".asc" file is noted on the schematic figure, in a red box.
- Many of the Fault Detect Circuit Tests are run with Maximum Timestep=10ns, so when zooming in to measure 400ns type delays, some accuracy can be achieved. For most simulations, by leaving Maximum Timestep blank, will result in faster simulation times.
- The real IC uses 5000+ transistors, which yield the resultant detailed behaviors and plots, documented in the datasheet.
- The AD8460 Macromodel was designed to best model the cases listed here, while providing other case results as close to the datasheet performances as design compromises would allow for convergence, complexity, and simulation time trade-offs.
 - Cload=1nF, Ccomp=0pF
 - ► Cload=22nF, Ccomp=10pF
 - Cload=47nF, Ccomp = 20pF

Model Features

	ANALOG DEVICES			
AHEAD OF WHAT'S POSSIBLE				

AD8460 LTspice Macromodel versus Real IC		
Function	Real IC	LTspice Model
Digital Interface	SPI/Parallel Interface	Not Modeled
Clock Generator Input	SYNC pin	Not Modeled
Arbitrary Waveform Generator Mode	AWG Mode	Not Modeled
Arbitrary Pattern Generation Mode	APG Mode	Not Modeled
Thermal Monitor	TMP pin	Not Modeled. No OverTemperature Shutdown.
Thermal Monitor Comp	COMP_T pin	Not Modeled
DAC	14Bit DAC with INL, DNL	Not Modeled. Ideal DAC as Vdac Voltage scaled for 0 to Full-scale Current Out.
Temperature Effects	Drifts, Gain Errors, etc.	Not Modeled. 25C Typical Specs only.
Fault Detect Thresholds	Register Programmable	External Analog Voltage Programmable
Fault Detect Alarms	Register Read, Latched/Real Time	External Output Pins: 1=Fault, 0=No Fault, Not Latched, Real Time only
SDN_IO Function	Fault Detect Delay/Override	Fault Detect Delay/Override
SDN_RESET	Hardware Reset pin	Hardware Reset pin
Adjustable Iq	Register Programmable	Fixed at Iq=22.5mA
DAC FS Adjust	Typical Datasheet Specs	Typical Datasheet Specs
DAC Reference	Typical Datasheet Specs	Typical Datasheet Specs
Output Offset Voltage	Typical Datasheet Specs	Typical Datasheet Specs
Power Op Amp Zout Enabled/Disabled	Typical Datasheet Curves	Typical Datasheet Curves
Power Op Amp lout versus Vout	Typical Datasheet Curves	Typical Datasheet Curves
Power Op Amp PSRR over Frequency	Typical Datasheet Curves	Typical Datasheet Curves
Power Op Amp CMRR over Frequency	Typical Datasheet Curves	Typical Datasheet Curves
Power Op Amp Vnoise	Typical Datasheet Curves	Typical Datasheet Curves
Power Op Amp Inoise	Typical Datasheet Curves	Typical Datasheet Curves
Harmonic Distortion	Typical Datasheet Curves	Not Modeled
Large Signal/Small Signal Behavior:	Typical Datasheet Curves:	Typical Datasheet Curves:
Slew Rate	CL=1nF, Ccomp=0pF	CL=1nF, Ccomp=0pF
Small Signal Bandwidth	CL=22nF, Ccomp=10pF	CL=22nF, Ccomp=10pF
Power Op Amp Overload Recovery Time	CL=47nF, Ccomp=20pF	CL=47nF, Ccomp=20pF
Power Op Amp Settling Time		
Internal Power Dissipation	Datasheet Information	Not Modeled- R&D for Future Model
Thermal Performance	Datasheet Information	Not Modeled- R&D for Future Model

©2023 Analog Devices, Inc. All rights reserved.

Example Circuit Checkout

Example Circuit Checkout

Example Circuit Checkout

Typical Application Operation

V(out)

т

7µs

т

8µs

9µs

10µs

11µs

For V(vdac) input = +/-1V, expect V(out) to be +/-40V.

т

2µs

т

3µs

т

4µs

5µs

6µs

т

1µs

0µs

0.6V

0.8V•

10

SPECIFICATIONS Table 1. Electrical Characteristics (HVCC = + 50 V, HVEE = - 50 V, IHVCC = + 22.5 mA, IHVEE = - 22.5 mA, VCC_5V = + 5 V, VREF_5V = + 5 V, VREF_1P2V = + 1.2 V, $R_{\text{TERM}} = 50 \Omega$, R_{SET} to FS_ADJ = 2 k Ω , COMP_L, COMP_H = 0 pF, $C_{\text{LOAD}} = 1 \text{ nF}$, $T_{\text{C}} = 30^{\circ}$ C, Unless Otherwise Noted.) PARAMETER SYMBOL CONDITIONS/COMMENTS MIN TYP MAX UNITS DYNAMIC PERFORMANCE $V_{OUT} = 0.1 V p - p, T_J = 85^{\circ}C.$ Small Signal Bandwidth MHz f_{3db} 4.3 See Figure 44. Large Signal Bandwidth¹ $V_{OUT} = 80 V p-p$. See *Figure 41*. 1 MHz $V_{OUT} = 80 V p-p$. See *Figure 8*. SRRISE V/µs 2100 Slew Rate, 20% to 80% SRFALL $V_{OUT} = 80 V p-p$. See *Figure 9*. 1800 V/µs

Slew Rate Measure Points (20% to 80%)

VoutP=+40V

VoutM=-40V Vout_step=VoutP-VoutM

Vout_step=+40V-(-40V)=80V

Vout_mid=(VoutP+VoutM)/2

Vout_mid=(+40V+(-40V))/2=0V

20% to 80% Slew Rate Measure = 60% (Vout_step)

SR_meas=0.6*80V=48V

SR_measP=Vout_mid + 1/2(SR_meas)

SR_measP=0+1/2(48V)=+24V

SR_measM=Vout_mid - 1/2(SR_meas)

SR_measM=0-1/2(48V)=-24V

Use LTspice ".step" directive to change Ccomp to compare different values to datasheet curves for Large Signal Transient Responses.

Easy Compare Datasheet Curves to LTspice Plots

Step1: Use Windows "Snipping Tool" to copy and past Datasheet Curve into PowerPoint.

Step2: Run LTspice and in top "Toolbar" select "Window>Tile Vertically" on one monitor screen. This will give the best image resolution for copy and paste.

Step3: Scale X and Y axis in LTspice Plot Window to match Datasheet Curve axes.

Easy Compare Datasheet Curves to LTspice Plots

Step4: Use Windows "Snipping Tool" to copy and paste LTspice PLot into PowerPoint. Bring the LTspice Plot to the front.

Step5: Now need to make the LTspice Plot "transparent" so can see and compare the Datasheet Curve behind it. Select the LTspice Plot image, right click on it and select "Format Picture". On the "Picture Transparency" slider adjust the slider to see both the Datasheet Curve and LTspice Plot. Here 35% was used. Place the LTspice Plot image, by selecting it and holding down left mouse button and moving to align with Datasheet Curve graticules as shown here. Can use up/down and left/right arrows on keyboard for fine movements. Use the dots on left/right side and top/bottom to resize the image.

- AD8460 LTspice Plot comparison with Datasheet Curves for Large Signal Pulse Response.
- Model was designed for Ccomp = NONE, Cload = 1nF.
- Step response changes with different Ccomp. Not an exact match, but a close trend to Real IC, given model trade-offs.

Figure 9. Falling Edge - Large Signal Pulse Response vs. CLOAD and CCOMP, Falling Edge, CLOAD = 1 nF

Fault Detect Operation

OverCurrent Source Fault Test

t0: $I(RL) - V(OC_SRC_LIMIT) = 0 \rightarrow OC_SRC trip$

| **ANALO**G

OverCurrent Source Fault Test

0ver(Current Source Fa	ult Test	Zoom-in1	SDN_IO with External Float: 0V = No Fault Detected 5V = Fault Detected	
-0.4A= -1.0A= -1.6A= -2.2A	1		I(RL) – V(OC_SRC_LIMIT time due to OverCurren) at OA gives us the trip point It Source Fault at Cursor 1.	
1.5V	(V(vdac)*40)/39	V(oc_src_limit)			
0.01/-					
0.00					
-1.5V	V(sdn_r	eset)			
1.6V-					
-0.4V	4V-			V(OC_SRC_ALARM) goes high at Cursor 2, when I(RL) goes	
1.0V		2	above V(OC_SRC_LIMI	above V(OC_SRC_LIMIT) threshold, at Cursor 1, after an	
0.5V		~	internal programmed d	delay.	
0.0V-	Mada				
6.0V	v(san_		Diff (Cursor2-Cursor1)	delta gives us the delay from an	
3.0V-			OverCurrent Source Fa	ult and V(OC_SRC_ALARM) going high	
0.01/-					
1.5A	[(RI)	•	AD8460 TG OC SRC Test rat	w ×	
0.04			Cursor 1	As close to 0A	
0.07			I(RI)-V(oc_src_limit	as possible.	
-1.5A	V(ou	t)	Horz: 1.2183899ms Ve	ят: -2.1397346µА	
500			V(oc_src_alarm)	As close to 500mV	
-5V -			Horz: 1.2187862ms Ve	as possible.	
-60V-			Diff (Cursor2 - Cursor1)	at: 472 71074m	
1.2126ms ©2023 Analoc	1.2130ms 1.2134ms 1	2138ms 1.2142ms	1.2146ms	22	

Zoom-in2 OV = No Fault Detected AHEAD OF WHAT'S POSSIBLE I(RI)-V(oc_src_limit) 5V = Fault Detected 0.2A-0.4A 1.0A 1.6A-2.2A (V(vdac)*40)/39 V(oc_src_limit) 1.5V-0.0V--1.5V V(sdn_reset) 3.6V V(SDN_RESET) is pulsed high at Cursor 1 1.6 -0.4V V(oc_src_alarm) 1.0V⁴ V(OUT) is enabled at Cursor 2 0.5V 0.0V V(sdn_io) 6.0V-Diff (Cursor2-Cursor1) delta gives us the delay from V(SDN_RESET) going high to V(OUT) enabled. 3.0V-Should be 410ns 0.0V I(RI) 1.5A AD8460_TG OC SRC Test.raw х As close to 1.65V 0.0A Cursor 1 V(sdn_reset) as possible. -1.5A 1.9857768V Horz: 1.4010006ms Vert: V(out) 50V-Cursor 2 2 As close to just > 0V V(out) 1.4014109ms 7.5255089V as possible. Vert: Horz: Diff (Cursor2 - Cursor1) -60V-1.40105ms 1.40115ms 1.40125ms 1.40135ms 5.5397321V 1.40095ms 1.40145ms Horz: 410.27855ns Vert:

©2023 Analog Devices, Inc. All rights reserved.

ANALOG

SDN IO with External Float:

OverCurrent Sink Fault Test

OverCurrent Sink Fault Test

©2023 Analog Devices, Inc. All rights reserved.

OverVoltage Positive Fault Test

©2023 Analog Devices, Inc. All rights reserved.

©2023 Analog Devices, Inc. All rights reserved.

OverVoltage Negative Fault Test

©2023 Analog Devices, Inc. All rights reserved.

©2023 Analog Devices, Inc. All rights reserved.

SDN_IO Operation SDN_RESET Operation

AD8460_SDN_IO Delay Test.asc

©2023 Analog Devices, Inc. All rights reserved.

©2023 Analog Devices, Inc. All rights reserved.

^{©2023} Analog Devices, Inc. All rights reserved.

ANALOG DEVICES

SDN_IO Delay Timing:

$$Isdn = Csdn * \frac{\Delta Vsdn}{\Delta tdly}$$

$$Csdn = \frac{170\mu A * tdly}{2.5V}$$

$$tdly = \frac{2.5V * Csdn}{170\mu A}$$

$$dly = \frac{2.5V * 6nF}{170\mu A} = 88.235\mu s$$

ANALOG DEVICES

SDN_IO with External Cap: <2.5V = No Fault Detected >2.5V = Fault Detected

Diff (Cursor2-Cursor1) delta gives us the *delay from V(SDN_RESET) going high and SDN_IO <2.5V* Ideally Should be 88.235us, Sim shows 87.292us. *Small leakage currents and over/under shoots will alter slightly the currents out of SDN_IO. Internal Fault Detect Timing delays will also contribute slightly to the accuracy of this delay.*

41

42

ANALOG

SDN_IO Externally Driven Low

SDN_IO Externally Driven Low

ANALOG DEVICES

SDN_IO Held Low

SDN_IO forced low means Power Op Amp is always enabled, regardless of any faults.

t1: V(SDN_IO) is externally high impedance and so it is internally pulled down close to GND (20mV).

t2: V(SDN_IO) is externally driven to GND with a low on-resistance switch.

t2-t3: V(SDN_IO) is externally held at GND with a low onresistance switch. V(OV_NEG_ALARM) going high shows many OverVoltage Negative Faults but the Power Op Amp stays enabled, as seen by correct waveforms on V(OUT) and I(RL).

> SDN_IO: OV = No Fault Detected SV = Fault Detected

©2023 Analog Devices, Inc. All rights reserved.

SDN_IO Externally Driven High

SDN_IO Externally Driven High

SDN_IO Held High

SDN_IO forced high means Power Op Amp is always disabled, regardless of any faults.

t1: V(SDN_IO) is externally high impedance and so it is internally pulled down close to GND (20mV).

t2: V(SDN_IO) is externally driven to 5V with a low onresistance switch. Power Op Amp is disabled as seen on I(RL) and V(OUT) going to zero.

t3: V(SDN_RESET) is pulsed high which has no effect on enabling Power Op Amp since SDN_IO is forced high.

SDN_IO: OV = No Fault Detected 5V = Fault Detected

Appendix: LTspice Schematic and Plot Images

 \times

🚺 Internet Drafting Options

Help

🞽 Waveforms

🌮 Control Panel X	🎦 Control Panel
Image: Compression Image: Component pin shorts[*] Font Properties[*]	Image: Compression Image: Co
Automatically scroll the view[*] Mark text justification anchor points Mark unconnected pins Show schematic grid points[*] Orthogonal snap wires	Cursor width[*]: 4 Use radian measure in waveform expressions[*] Mouse cursor type[*]: Auto Font[*]: Arial Font point size[*]: 12 Color Scheme[*] Open Plot Defs Hot Keys[*] Directory for .raw and .log data files[*] Store .raw, .plt and .log data files in a specific directory[*][
Ortho drag mode[*] Cut angled wires during drags ✓ Un-do history size: 500 Pen thickness[*]: 2 ∨ Show Title Blocks[*] ✓ Hot Keys[*]	
Reverse Mouse Wheel Scroll[*] Cursor type[*]: Auto [*] Setting remembered between program invocations. Reset to Default Values	Erowse [*] Setting remembered between program invocations. Reset to Default Values
OK Cancel Help	OK Cancel

For best image resolution, Zoom-in on Desired Final Image, use Snipping Tool to copy Zoom-in image, paste as Bitmap or Device Independent Bitmap into document.

If break the loop and forget where to inject <u>Vtest</u> – inject into highest impedance node.

13 August 2021 Analog Devices Confidential Information: @2021 Analog Devices, Inc. All rights reserved.

Inject AC Source, Vtest, into –input.

Sometimes a Snippet image is better captured not on a Single Monitor Full Screen Snippet BUT rather use a Single Monitor, Window, Tile Vertically Snippet of the Plot Window.

