

SPI Engine

A framework for creating SPI controllers

Lars-Peter Clausen
<lars-peter clausen@analog.com>

Introduction

● ADI makes SPI compatible peripherals

– ADC, DAC, Gyroscope, IMU, …

● SPI interface is used for

– Configuring the peripheral

– Reading/writing sample data from/to the peripheral

● A data ready signal indicates completion of a conversion

Software based flow

● Configure peripheral

– Sampling rate, active channels, …

● Enable conversion

● Capture data (repeat)

– Wait for data ready IRQ

– Read result

● Disable conversion

Software based flow - Challenges

● Configure peripheral

– Sampling rate, active channels, …

● Enable conversion

● Capture data (repeat)

– Wait for data ready IRQ

– Read result

● Start SPI transfer

● Wait for SPI transfer to finish

● Disable conversion

Critical section

Software based flow - Challenges

● Peripherals often have no FIFO

● Samples rates can go up to several MSPS

● Low latency access is required

– Polling has huge CPU overhead (no other processes can run)

– Interrupt driven approach has non deterministic latency on a general purpose OS

– Samples are lost

● At high samplerates one interrupt per sample becomes unsustainable

– CPU is saturated

Software based flow - Challenges

● Peripheral is SPI compatible, but ...

● For datasheet performance very precise timings are necessary

Software based flow - Challenges

● Moving sample data into a processing pipeline ...

– Requires additional memory copies

– Introduces additional latency

Use a FPGA!

Solution – Use FPGA!

● Use FPGA to SPI bus interfacing

● Initial solution: Custom IP core for each project

– Works fine if number of projects is small

– Useful if no pattern has emerged yet

One Core per Project - Issues

● Very application specific and monolithic

– Tightly coupled application specific logic and interface logic

– Only specific feature subset of the peripheral are supported

– Makes it hard for the customer to adapt and re-use it

● Assumes that there is exactly one SPI peripheral connected

● Custom and incompatible interfaces

– Needs custom software driver support

One Core per Project - Issues

● Copy & Paste

– Large maintenance overhead

– Leads to bit-rot (lots of outdated projects)

● Very little documentation

– Makes it hard for the customer to use

One Core per Project - Issues

● Summery

– Low flexibility and re-usability

– Works fine for one or two projects but does not scale

● Focus should be on providing solution building blocks to the customer

– Demos only example of how to use the building blocks

Modularization

Design Pattern - Modularization

● Starting point: Multiple modules implementing variations of similar
functionality

Design Pattern - Modularization

● Extract common functionality and put them in their own module

● Instead of having multiple similar versions have one version with
configuration parameters

● Define standard interfaces to communicate between blocks

Design Pattern - Modularization

Design Pattern - Modularization

Design Pattern - Modularization

● Combine multiple blocks using standard interfaces

– Vivado makes this easy using IP integrator and/or hierarchies

● Sometimes glue logic is necessary

● Advantages

– Easier to create new applications from existing pieces

– If a block is improved all applications benefit from it

SPI Engine - Command Stream Execution Engine

● Heart of the SPI engine framework

● Implements the low level SPI bus interface logic

● Has two interfaces

– SPI Engine command stream slave

– SPI bus master

SPI Engine - Command Stream Interface

● Command stream (master to slave)

– Defines the execution engine behavior

● SDO data stream (master to slave)

– Data written to the SPI bus

● SDI data stream (slave to master)

– Data read from the SPI bus

● Synchronization event stream (slave to master)

– Used to notify that a certain point in the command stream has been reached

SPI Engine - SPI Bus Interface

● Logical SPI bus signals

● Low-level SPI signal

– sclk, sdo, sdi, cs

● Control signals

– three_wire, sdo_t

Interface Logic
and

Application Logic

Design Pattern - Separate Interface and Application Logic

● Application logic defines what is done

– E.g. write value 0x4 to configuration register 0x10

● Interface logic defines how it is done

– Assert chip-select, output first bit, toggle clock signal, …

Design Pattern - Separate Interface and Application Logic

● Multiple applications can use the same interface logic

● The same application can use different interface logic block

– E.g. SPI bus or I2C bus for register map configuration

Design Pattern - Separate Interface and Application Logic

● Interface logic defines a set primitives

– Basic operations offered by the interface logic

– Typically atomic operations where it does not make sense to further break them
down

● Application logic combines primitives to accomplish complex tasks

– Different applications will use different combinations

SPI Engine - Separate Application and Interface Logic

SPI Engine - Command Stream Generator

● Command stream generator implements application logic

– Generates SPI Engine commands to control execution engine

● Interconnect makes it possible to connect multiple applications to the
same execution engine

– Allows more then one device on the same SPI bus

SPI Engine - Command Stream Interface Primitives

● Command stream interface primitives

– TRANSFER: Read and/or write data to the SPI bus

– CHIPSELECT: Changes the chip-select setting

– CONFIG: Writes run-time configuration registers

– SLEEP: Wait for a period of time

– SYNC: Generate synchronization event

● Support for primitives that are not needed can be disabled

– Design uses less resources

Layering

Design Pattern - Layering

● Application logic and interface logic can be stacked multiple layers

● Layers in the middle act as ...

– interface logic to the layer on top

– application logic to the layer underneath

● Allows very flexible architecture

SPI Engine - Layering

SPI Engine - AXI-SPI Engine

● Memory mapped access to command stream interface

– Allows fully software controlled CSG

● AXI Lite control interface

● Interrupt driven control flow

● (Optional) FIFO for the control streams

Partitioning

Design Pattern - Partitioning

● Decide which functionality is implemented at which level

– Software, HDL, …

– Standard logic, Custom logic, ...

● Trying to find the sweet-spot from a cost perspective

– Can be difficult

– Depends on many different factors, result depends on the weighting of each factor

● Consider the existing ecosystem you want to integrate into

SPI Engine - What's the problem again?

● Configure peripheral

– Sampling rate, active channels, …

● Enable conversion

● Capture data (repeat)

– Wait for data ready IRQ

– Read result

● Start SPI transfer

● Wait for SPI transfer to finish

● Disable conversion

Critical section

SPI Engine - Partitioning

● Re-use existing software drivers

– Reduces maintenances overhead

● Accelerate only critical paths in HDL

– Keeps HDL lean and simple

– Software only requires small changes

● Use standard blocks for acceleration when possible

– Same logic blocks can be used in many applications

Offloading

SPI Engine - The Concept of Offloading

● Introduce the concept of SPI offloading

– SPI controller takes care of tasks traditionally done by the CPU

● Interrupt offloading

– SPI controller automatically executes pre-programmed transfer

– Very low latency

– A lot less overhead for repetitive transfers

● Data offloading

– SPI controller is capable to send data to a hardware port

– Avoids memcpy

– Reduces latency

SPI Engine - Offload module

● Internal RAM/ROM for CMD and SDO stream

● When trigger is asserted the CMD stream is send out

● Received data is send onto the offload_sdi interface

● Offload control interface allows dynamic reconfiguration

SPI Engine - The Concept of Offloading

● SPI offloading is not specific to SPI Engine

– Other SPI controllers can offer SPI offloading functionality

● Linux kernel will get SPI offloading support to its standard SPI API

● ADI converter drivers will be SPI offloading aware

– Will use SPI offloading when available

– Otherwise fall-back to CPU processing

SPI Engine - The Concept of Offloading

Conclusion

SPI Engine - Conclusion

● A framework for creating SPI controllers

– Standard blocks and custom blocks can coexist

– Standard interfaces

– Clear separation between interface and application logic

– High flexibility and re-usability

– Extensive documentation

● SPI-Engine pipeline is assembled from SPI-Engine blocks

Case Study

Case Study - Colorimeter

● Colorimeter application

– Uses AD7175-2 ADC (50kHz)

– Uses AD5201 digital potentiometer

– Both on the same SPI bus

● AXI SPI-Engine used for general register access to both parts

● SPI-Engine offload used for low-latency, high-throughput sample
conversion

– Conversion results passed to processing pipeline

● http://wiki.analog.com/resources/eval/user-guides/eval-cn0363-pmdz

Case Study - Colorimeter

Case Study - Colorimeter

Thanks

More Information

● http://wiki.analog.com/resources/fpga/peripherals/spi_engine

Questions?

