ANALOG

DEVICES wcBM Mote Firmware Guide

Wireless CoM Mote Firmware Guide (1.0.4R Project Revision)

Rev.4 Code base: C code
Created: 25/10/2018 2:21 P.M.
Author: Tom Sharkey

Last Modified:

Modified by:

29/01/2021 6:28 PM

Tom Sharkey

Rev. 3 | Page 1 of 16

Contents

T OVRIVIEW ..ttt bbbt h bbbt b e bt b et e b et bt b et bt e bbbt bt et 3
2 Tool Requirements and ENVIroNMENt SETUPcoveivieirieirereceeee e 4
3 COAE STIUCUIE ..ttt bbbttt b et b bbbt bebens 12
I8 A [T A Y- 14 o LT OSSP PR PPOTUPPOUPOPRONt 13
3.2 Communication STate Machine:oc.ooiiiieie ettt e sae e s 14
3.3 Data Handle, State IMaChiNe: ..cccoeeeeeeee ettt ettt ettt e e e e e e e e e e e e e 16

Revision History:

Rev.0 - Initial Document

Rev.1 — General Edits

Rev.2 — General Edits

Rev.3 — Addition of Tool Requirements and Environment Setup section
Rev. 4 — General Edits

Rev. 5 — Addition of download and debugging note, made document font consistent.

© Analog Devices, 2018 Rev. 3 | Page 2 of 18

1 Overview

This document provides an overview of the example firmware provided with the Condition Based Monitoring
(CBM) kit. Companion documents are the “Getting Started Guide” provided with the CBM Kkit. This particular
document version is based on the features available in the CBM code version referred to in the document title.

The purposes of this document are to enable the user to setup the firmware project in IAR Embedded Workbench,
and to provide a high-level understanding of the programme structure, flow, and interactions, and to be able to
customise the code. Please note that this code example is purely that - an example, and has not been tested or
qualified in any way for production.

The embedded C code for the hardware in this project makes use of SmartMesh IP mesh network technology. The
guide depicts a sample application that has been built on top of this SmartMesh framework. There are many
functions which will not be discussed in this guide but can be investigated further using SmartMesh documentation.
[https://dustcloud.atlassian.net/wiki/spaces/ALLDOC/overview?mode=glob]

A summary of the various C project files is given below:

* Main user application files:

0 main_prog.c *(top level application code with state machine)

scheduler.c (kernel module for managing scheduling timers, main loop)
SmartMesh_RF_cog.c (SmartMesh functions for mote communication and callbacks)
ADC_channel_read.c (initialise adc and holds adc sampling and fft math functions)
SPI0_ADXL362.c (SPI functions for interfacing with the ADXL362)

SPI1_AD7685.c (SPI functions for interfacing with the AD7685)

O O O O O

* ADuCM4050 drivers and libraries - provided in the relevant IAR CMSIS pack.
* SmartMesh library source files:
o dn_endianness.c
dn_hdlc.c
dn_ipmt.c
dn_lock.c
dn_serial_mt.c

O O 0O O o

dn_uart_handle.c

In the following code structure section, the high-level functionality of the main user application files will be
explained.

© Analog Devices, 2018 Rev. 3 | Page 3 of 18

This guide will
discuss the
Application Layer

ADuCM4050 PC

Application

API Interface

SmartMesh C-LIB Python GUI
Porting Layer API Interface
ADC
© ()
SmartMesh l ‘ SmartMesh
Mote eManager

Figure 1: Hardware Overview

2 Tool Requirements and Environment Setup

This project has been compiled and built in the IAR Embedded Workbench IDE version 8.22.2. The use of older
versions may result in broken project options and/or project options not being fully transferred over and
dependencies not working - these will then need to be manually set up.

The project depends on the installation of the appropriate CMSIS pack in IAR Embedded Workbench, which
enables the correct ADuCM4050 drivers and libraries to be installed, as these are not shipped with the source code.
The relevant SmartMESH libraries are included in the source code. If the project does not open correctly due to
version mismatch - for example - the project can be set up from scratch as shown in the next steps.

Copy the directories provided in the ‘C firmware’ folder to your PC (src, ext, include, project) maintaining the same
directory structure. If you are using IAR EWB ver. 8.22.2 or newer, the project should open successfully. The project
is found in the ‘project’ directory of the provided files. Open the ‘cbm.eww’ workspace file in IAR EWB. If this opens
successfully, with no broken project options, follow steps 3-8 below to install the correct CMSIS driver package for
the ADuCM4050 microcontroller. It is also worth checking the remaining steps to ensure that the Project Options
are set correctly and all of the required source files are present.

© Analog Devices, 2018 Rev. 3 | Page 4 of 18

If the project cannot be opened successfully, follow all of the steps below to set up the project from scratch in IAR

Embedded Workbench.

1. Delete all of the files with the name ‘cbm.* in the ‘project’ folder (e.g. cbom.eww, cbm.ewt etc). Delete the

‘project\settings’ folder. These will be recreated in the next steps. Ensure that the

‘ADuCM4050_moreSRAM.icf file is NOT deleted.

2. File->New Workspace
3. Project->CMSIS-Pack->Pack Installer
4. Select ADuCM4x50_DFP->3.2.0, right-click this package, and select install
5. Select ARM -> CMSIS -> 5.7.0, right-click and install, then press OK. Versions may vary for the DFP and
CMSIS packages, but the version installed should be the same or newer than the versions shown.
B ' CMSIS Pack Manager = a X
Search: ‘ Search for updates

Pack Description
v ""Q,‘ AnalogDevices
v %5 ADUCM4x50_DFP

#3.20 Analog Devices ADuCM4x50 Device Support. (Subject to the Software License Agreet
300 Analog Devices ADuCM4x50 Device Support. (Subject to the Software License Agreet
%% EV-COG-AD4050LZ_B!
%5 ARM

Install local pack file

6. Project->Create New Project->Empty CMSIS Pack Project
7. Select ADuCM4x50

© Analog Devices, 2018 Rev. 3 | Page 5 of 18

Cancel

B Select device... = [m] X
Device: ADuCM4050 CPU: ARM Cortex-M4
Vendor: Analog Devices Max. Clock: 52 MHz
Pack: AnalogDevices, ADuCM4x50_DFP.3.2.0 Memory: 96 kB RAM, 508 kB ROM
URL: http://www.keil.com/dd2/analogdevices/aducm4050 FPU: single precision "V
Search: ‘ Endian: Little-endian
v @ Analog Devices The ADuCM4050 processor is an ultra low-power integrated
v %% ADUCMA4x50 Series mixed-signal microcontroller system for processing, control and
B ADuCM4050 connectivity. The MCU system is based on the ARM Cortex-M4F
@ ARM processor. The MCU also has a collection of digital peripherals,

embedded SRAM and flash memory, and an analog subsystem
which provides clocking, reset, and power manage-ment capability
in addition to an ADC subsystem.

==

8. Select Pack Components shown below. These components may be highlighted in orange until all the
correct options are highlighted, but should turn green when all options are selected correctly.

' Project CMSIS Component Manager - a X
Software Components Sel. Variant Vendor Version Description
B ADuCM4050 Analog Devices ARM Cortex-M4 52 MHz, 96 kB RAM, 508 kB ROM
> € Board Support EV-COG-AD4050LZ AnalogDevices 3.1.0 _ Analog Devices EV-COG-AD4050LZ Evaluation Board
v € CMSIS Cortex Microcontroller Software Interface Components
¥ CORE ARM 5.1.2 . EMSIS-CORE for Cortex-M, SC000, SC300, ARMvE-M
v DSP O ARM 1.5.2 . CMSIS-DSP Library for Cortex-M, SC000, and SC300
NNLib O ARM 110 CMSIS-NN Neural Network Library.
> @ RTOS (AP) 1.00 . CMSIS-RTOS AP for Cortex-M, SCO00, and SC300
& RTOS2 (API) 213 . CMSIS-RTOS AP for Cortex-M, SCO00, and SC300
v & Device Startup, System Setup
Cycle Count O AnalogDevices 320 _, Common utility functions for ADuCM4x50 examples
v & Drivers Analog Devices driver components for ADuCM4x50 devices
@ ADC AnalogDevices 3.20 LADC
¥ BEEP O AnalogDevices 3.20 . BEEP
@ CRC O AnalogDevices 3.20 LCRC
@ Crypto O AnalogDevices 3.20 . Crypto
¥ DMA AnalogDevices 320 L, DMA
@ Flash O AnalogDevices 3.20 , Flash Controller
@ GPIO AnalogDevices 3.20 L GPIO
@ 12 O AnalogDevices 3.20 Llc
¥ Interrupt O AnalogDevices 320 , External Interrupt
¢ Power AnalogDevices 3.20 . System Clock and Power Management
@ RNG O AnalogDevices 320 Random Number Generator
@ RTC O AnalogDevices 3.20 LRIC
@ SPI AnalogDevices 3.20 LSPL
¥ SPORT (=] AnalogDevices 3.20 . SPORT
? TMR AnalogDevices 320 , GP Timer
@ UART AnalogDevices 3.20 UART
¥ WDT AnalogDevices 3.2.0 L WDT
@ Examples Support AnalogDevices 3.20 , Common utility functions for ADuCM4x50 examples
@ Global Configuration AnalogDevices 3.20 , Global configuration files for ADuCM4x50 drivers
@ Silicon Revision , AnalogDevices 320 , Silicon Revision 0.0
@ Startup AnalogDevices 320 , System Startup for ADuCM4x50

9. Save the project in the ‘project’ folder. The source files will then be at the correct level relative to the
project.

© Analog Devices, 2018 Rev. 3 | Page 6 of 18

WCBM Mote Firmware Guide

10. Project->Add Files: Add the source files provided, to the project (user application files, and SmartMESH
library files) from the src, src/system, and ext/SmartMesh/src folders. These can be organized in Groups if
desired (Project->Add Group). There is no need to add the header files in the various ‘include’ folders to
the project explicitly as these will be added as compiler search options in step 10.

Workspace
‘ Debug

Files

£ @testproj - Debug
emCMSIS-Pack

—-] H Smarthdesh

[dn_endianness.c
B dn_hdlc.c

[dn_ipmt.c

[dn_serial_mt.c

) dn_uan_handle.c
) M system

) Pinbux.c

[ADC_channel_read.c
[dn_lock.c

[main_prog.c

[e] scheduler.c

] Smarttdesh_RF_cog.c
[SPID_ADKL3EZ.c

[SPI1_AD7685.c

B Output

11. Project->Options->C/C++ Compiler: Add the include directories shown below $PROJ_DIR$\..\include and
$PROJ_DIR$\..\ext\SmartMesh\include

© Analog Devices, 2018 Rev. 3 | Page 7 of 18

Options for node "cbm”

X

Category: | Factory Settings ‘
General Options A | | [JMuttifile Compilation B
Static Analysis Discard Unused Publics
Runtime Checking MISRAC:1998 Encodings Extra Options
Language 1 Language 2 Code Optimizations Output

Assembler List Preprocessor Diagnostics MISRAC:2004

O t C te

litput Convertes [Ignore standard include directories

Custom Build

Build Actions Additional include directories: (one per line) -

i SPROJ_DIRS\..\include R
Linker SPROJ_DIRS\..\ext\SmartMesh\include o
Debuager SCMSIS_PACK_DEVICE_INCLUDESS

SCMSIS_PACK_INCLUDESS

Simulator

CADI Preinclude file:

CMSIS DAP |

GDB S

] efve.r Defined symbols: {one per line)

Helmaciet SCMSIS_PACK_DEVICE_DEFI . |] Preprocessor output to file

J-ink/3-Trace _RTE | Preserve comments

TI Stellaris Generate Hine directives

Nu-Link

PE micro

Cancel |

12. Project->Options->General Options->Target: Select the floating-point unit VFPv4 single precision

Options for node "cbm"

Category:

General Options ~

Static Analysis

Runtime Checking Library Options 2 MISRAC:2004 MISRAC:1998

C/C++ Compiler Target Output Library Configuration Library Options 1
Assembler

Output Converter
Custom Build

Build Actions O Device AnalogDevices ADUCM4050 E
Linker
Debugger

Processor variant
O Core Cortex-M4

@CMSISPack |ADUCM4D50 Analog Devices1 | [|

Simulator Endian mode Floating point settings
CADI Little:
CMSIS DAP Big

GDB Server BE32
I-jet/ITAGjet BE8
Iink/J-Trace Advanced SIMD (NEON)

1 Stellaris DSP Exension TrustZone
Nu-Link
PE micro

FPU |VFPvésingle precision |

16

Cancel

© Analog Devices, 2018 Rev. 3 | Page 8 of 18

13. Project->Options->General Options->Library Configuration: Ensure that DSP library is checked

Options for node "CbM_TestPrj" X
Category:
forers oovers 4
Static Analysis
Runtime Checking Library Options 2 MISRAC:2004 MISRAL:1998
C/C++ Compiler Target Output Library Configuration Library Options 1
Assembler
e 0 Library: Description:
UtpUt Conver ‘ Nomal v Use the nomal configuration of the C/C++
Custom Build —|untime library. No locale interfface, C locale, no
3 3 file descriptor support, no multibytes in printf and
Bl Actons scanf, and no hex floats in strtod.
Linker
Debugger Configuration file:
Simulator STOOLKIT_DIRS\INC\c\DLib_Config_Nomal h
CADI [[] Enable thread support in library
CMSIS DAP Library low4evel interface implementation CMSIS
GDB Server O Non‘e stdout/std‘err . 2 Use CMSIS
IHet/TTAGjet (® Semihosted (® Via semihosting D05 o
Idink/1-Trace IAR breakpoint O Via SWO
TI Stellaris
Nu-Link
PE micro

s | Cancel

14. Project->Options->Linker, Select Override default and enter
$PROJ_DIR$\ADuCM4050_moreSRAM.icf

Category: Factory Settings

General Options ~

Static Analysis

Runtime Checking Hdefine Diagnostics ~ Checksum Encodings Extra Options
C/C++ Compiler Config Library Input Optimizations Advanced Output List
Assembler Linker configuration file
Output Converter [Qvenide defautt

Custom Build [sPROJ_mRs\ADuc MA4050_more SRAM icf
Build Actions

Debugger
Simulator
CADI
CMSIS DAP
GDB Server
Ijet/ITAGjet
J-Link/J-Trace
TI Stellaris
Nu-Link
PE micro

Configuration file symbol definitions: (one per line)

[ok || Cancel

© Analog Devices, 2018 Rev. 3 | Page 9 of 18

15. Project->Options->Debugger->Setup. Select J-Link/]-Trace in the Driver selection. Ensure also that in the
Download tab for the Debugger options, Use flash loader is selected.

Category:

Factory Settings
General Options ~

Static Analysis

Runtime Checking
C/C++ Compiler
Assembler Driver Runto

Output Converter J-Link/J-Trace v

Custom Build Setup macros

Build Actions [J Use macro file(s)
Linker

Simulator

CADI

CMSIS DAP

GDB Server
Ldet/TTAGiet ${CMSIS_PACK_PATH_AnalogDevices#ADUCM4x50_DFP#3
Jink/3-Trace
TI Stellaris
Nu-Link

PE micro

Setup Download Images ExtraOptions Mutticore Plugins

Device description file
[[J Ovenide defautt

0K Cancel

16. File->Save Workspace (in the ‘project’ directory)
17. Project->Rebuild All

The project should compile and link without errors and be ready to download and debug to the mote.

© Analog Devices, 2018 Rev. 3 | Page 10 of 18

Note, the first time you download and debug this program, you may get the following prompt:

E J-Link V&.30g Device Selection

The selected device "aDUCMA050" iz unknown ta this verzion of the J-Link zoftware.

Pleaze make sure that at lzast the care J-Link shall connect to, is selected.
Proper device zelection iz required to use the J-Link intemal flash loaders
for flazkh dowwnload or unlimited flazh breakpoints.

Far zome devices which require a zpecial handling, selection of the corect device iz impartant.

* Select OK, and proceed to the next page

J-Link V6.30g - Target device settings X
Filtes - "
Manufacturer Device Care Little endian >
. ¥) ¥ Care #0
I anufacturer Device Core NumCores Flash size Ritah size *

ARMI
Unspecified ARMI1 ARMT1 1
Unzpecified Cortex-85 Cortex-b5 1
Unzpecified Cortex-t7 Cortex-h? 1
Unspecified Cortex-a8 Cortex-b8 1
Unspecified Cortex-49 Cortex-b39 1
Unzpecified Cortex-812 Cortex-412 1
Unzpecified Cortex-815 Cortex-b15 1
Unspecified Cortex-d17 Cortex-s17 1
Unspecified Cortex-853 Cortex-853 1
Unzpecified Cortex-857 Cortex-b57 1
Unzpecified Cortex-bd Cortex-pd0 1
Unspecified Cortex-bd 0+ Cortex-0 1 b

Select a device for J-Link.

Selecting a device is not required for most devices, but allows maore efficient operation of J-Link as well as flash

download modification of flash mernary during a debug session as well as unlimited breakpoints in flagh mer
Breakpoints) Cancel

I case of doubt, select the first entry in the list: “Unspecified Device™. IT'

* Select Cancel. It is not necessary to specify a device. The flashing process will begin once this menu has
been closed.

© Analog Devices, 2018 Rev. 3 | Page 11 of 18

WCBM Mote Firmware Guide

3 Code Structure

The function of the main program is to:

* Initiate a connection between mote and manager

* Sample acceleration data via ADC

* Transmitraw and FFT data

* Handle changing sampling parameters from the manager
The overall operation of the program is depicted in Figure 2, with the initialization, communication state machine,
and data handling state machine, scheduler timing, and data format depicted in the following sections.

Legend

Peripheral Initialisation
(Clocks, power settings,
ADC, Timer)

Will be executed
Optionally executed

While loop

Initialisation of

Mote Data InLIJt:FLEI?e
Structure
If there is

Check foravailable
SmartMESH data data in buffer |

Handle_buffer

e ————
| Mote_Status

- .If not waiting _

Awaiting_response
for reply

| Open_Socket

i Bind_Socket
e Nt |
| Get_NetID

| Set_loinDC |

i Join

NEW_PARAM

——————————
Request_Service

SendTo

Connection established -
Loops until program ends

Wait for GP
timeout

Figure 2: High Level Diagram

© Analog Devices, 2018 Rev. 3 | Page 12 of 18

3.1 Initialisation:

Clock Simple constants that set frequencies

dividers corresponding to hardware clock frequencies.
These are used throughout the code, such as
when setting clock dividers later in
initialization.

Mote My reply and my error are variables set for

parameters | the user to make use of. They are currently
not used in this version of the program.
NET_ID is used to store the network ID
number of the manager. Join_duty is a value
between 0 and 255, and decides how quickly
the mote will join the network, at the cost of
greater energy usage. Ms_per_packet is used
to set the millisecond gap between packets
received.

Initialisation | Initializes variables necessary for application
function. Calls dn_uart_init which initializes

of Mote and - -

. the UART of the microcontroller.

Variables

and

Peripherals

(UART)

Start Begins and verifies correct function of the

Scheduler timer.

State The main body of the program. The CONNECT

machines and TRANSMIT state machines are described
in further detail below. They are responsible
for joining the mote to the network and
beginning the flow of data between mote and
manager (both directions).

© Analog Devices, 2018

Rev. 3 | Page 13 of 18

Clock dividers

Mote
parameters

Initialisation of
Mote
Variables and
Peripherals
(UART)

Start
scheduler

Figure 3: Initialisation

WCBM Mote Firmware Guide

3.2 Communication State Machine:

Default, idle .
Mote_Status Mate state Do nothing

If mote is in Schedule connection

Open_Socket Idle state to manager

If mote replies success_’ Call smartmesh mote

Bind_Socket To open socket bind socket (TCP)

If mote replies success Call set_netID with ID

Set_NetID)
- To bind socket set at program start

Request_Service

Get_NetID

Set_JoinDC

A success

operational

Figure 4: Communication State Machine

© Analog Devices, 2018

Rev. 3 | Page 12 of 16

If get_NetID returns
asuccess

If joinDC retumns

If BW change
Is requested

If mote state is

Send adcData Buffer to manager

If mote replies success .
P Save netlD to variable

to set_NetID

Join duty cycle —set to 255 if we want
To join quickly at the cost of battery life

Search for network and attempt to join

Request new/changed service level -
trigger on BW change event

Boot Status

A state that is only used for program startup.

Mote Status

This is the “idle” state for the mote. The mote begins the state machine here (after moving on
from boot status. The program will return to this state if it reaches a program timeout,
meaning it could not successfully connect to the network.

Open Socket

Here the mote schedules a connection to the manager. The mote is initializing a TCP three-way
handshake by sending a request to begin a session with the manager.

Bind Socket

If the manager returns an OK to the open socket request, the mote moves into the bind socket
state. A socket must be bound before data can be streamed from mote to manager.

Set NetID If the bind socket state returns a success, the set NetID state is entered. This sets the ID of the
network with a constant (NETID) chosen before program launch- the default is 2425.

Get NetID Stores the network ID chosen by the set NetID state as a variable.

Set JoinDC Sets the join duty cycle. This variable goes between 1 and 255 and determines how quickly a
mote joins the manager. Choosing a high duty cycle (255 -> 100%) will allow the network to
form more rapidly but the motes will also use more power.

Join The mote will attempt to search for a network with the same NetID and join it.

Request Request new / changed service level - triggers on bandwidth change event.

Service

SendTo Final state of the mote. In this state, the mote will send the adcData Buffer to the manager

whenever the data is available.

© Analog Devices, 2018

Rev. 3 | Page 15 of 18

3.3 Data Handle, State Machine:

NEW_PARAM

This state acts as a “double buffer”
for parameter changes to the mote.
It checks for updates to the
sampling frequency and resolution
at the beginning of the state
machine. These parameters cannot
be changed again until we return to
the new parameter state. This
ensures that key parameters do not
change during the execution of the
state machine as a result of
multithreading.

ACQ

Here the mote acquires data from
the ADC. It reads in the data from
the UART to the adcBuffer. When
this stage has completed, we have a
buffer that is full of “RAW” adc data,
but the FFT has not yet been
calculated and appended to the
buffer.

CALC

In this state we make use of some
basic ARM math functions to fourier
transform the raw data. It then
appends this fft data to the
adcBuffer, which is now ready to be
transmitted to the manager. The
transmission of data also begins in
this state.

X

TX is the transmission state, and the
mote will remain here until it
detects that the entire ADC data
buffer has been successfully sent.

WAIT

Following transmission of the data,
the mote remains in the wait state
until a flag is set indicating that

© Analog Devices, 2018

more data is available for reading.
The mote then returns to the
NEW_PARAM phase. This cycle will
continue until the program closes or
the mote loses connection to the
network.

NEW_PARAM

Mote parameters set

Acquire new ADC data H

Data acquired
Calculate FFT

Data modified H

Ready to transmit
A/_\Loop until

\ transmit finished

Loop state

Data sent
Wait for timer callbac

.

Figure 5: Data Handle State Machine

Rev. 3 | Page 16 of 18

Scheduler:

The scheduler timing for the embedded C code is outlined in fig.5. The code goes through a simple order of
operations: Idle, Sample, FFT, and Transmit. However, because SmartMesh IP has a packet size limit of 90 bytes,

any data sent that is greater than 90 bytes in length must be broken into smaller packets which are transmitted
separately. This is further described in fig.6.

Sample (single/multi) GP Timer or RTC

Transmit

Idle or Sleep

Summary Stat

Figure 6: Legend

Idle v FTT

Sample Transmit Single Frame

Figure 7: Timing Diagram

© Analog Devices, 2018 Rev. 3 | Page 17 of 18

Formatting data to be sent (shown for a sample size of 512 words):

512 256

Buffer to Send (768)

I

Packets for Transmission (768)

Handled by Python

Figure 8: Packets for transmission

© Analog Devices, 2018 Rev. 3 | Page 18 of 18

