
Rev. 3 | Page 1 of 16

 WCBM Mote Firmware Guide

Wireless CbM Mote Firmware Guide (1.0.1R Project Revision)

Rev.4 Code base: C code

 Created: 25/10/2018 2:21 P.M.

 Author: Tom Sharkey

 Last Modified: 11/01/2021 3:43 PM

 Modified by: Tom Sharkey

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 2 of 16

Contents

1 Overview .. 3

2 Tool Requirements and Environment Setup ... 4

3 Code Structure .. 9

3.1 Initialisation: ... 11

3.2 Communication State Machine: .. 12

3.3 Data Handle, State Machine: ... 14

Revision History:

Rev.0 - Initial Document

Rev.1 – General Edits

Rev.2 – General Edits

Rev.3 – Addition of Tool Requirements and Environment Setup section

Rev. 4 – General Edits

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 3 of 16

1 Overview
This document provides an overview of the example firmware provided with the Condition Based Monitoring

(CBM) kit. Companion documents are the “Getting Started Guide” provided with the CBM kit. This particular

document version is based on the features available in the CBM code version referred to in the document title.

The purposes of this document are to enable the user to setup the firmware project in IAR Embedded Workbench,

and to provide a high-level understanding of the programme structure, flow, and interactions, and to be able to

customise the code. Please note that this code example is purely that – an example, and has not been tested or

qualified in any way for production.

The embedded C code for the hardware in this project makes use of SmartMesh IP mesh network technology. The

guide depicts a sample application that has been built on top of this SmartMesh framework. There are many

functions which will not be discussed in this guide but can be investigated further using SmartMesh documentation.

[https://dustcloud.atlassian.net/wiki/spaces/ALLDOC/overview?mode=glob]

A summary of the various C project files is given below:

• Main user application files:

o main_prog.c *(top level application code with state machine)

o scheduler.c (kernel module for managing scheduling timers, main loop)

o SmartMesh_RF_cog.c (SmartMesh functions for mote communication and callbacks)

o ADC_channel_read.c (initialise adc and holds adc sampling and fft math functions)

o SPI0_ADXL362.c (SPI functions for interfacing with the ADXL362)

o SPI1_AD7685.c (SPI functions for interfacing with the AD7685)

• ADuCM4050 drivers and libraries – provided in the relevant IAR CMSIS pack.
• SmartMesh library source files:

o dn_endianness.c
o dn_hdlc.c
o dn_ipmt.c
o dn_lock.c
o dn_serial_mt.c
o dn_uart_handle.c

In the following code structure section, the high-level functionality of the main user application files will be

explained.

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 4 of 16

Figure 1: Hardware Overview

2 Tool Requirements and Environment Setup
This project has been compiled and built in the IAR Embedded Workbench IDE version 8.22.2. The use of

older versions may result in broken project options and/or project options not being fully transferred

over and dependencies not working – these will then need to be manually set up.

 The project depends on the installation of the appropriate CMSIS pack in IAR Embedded Workbench,

which enables the correct ADuCM4050 drivers and libraries to be installed, as these are not shipped

with the source code. The relevant SmartMESH libraries are included in the source code. If the project

does not open correctly due to version mismatch – for example – the project can be set up from scratch

as shown in the next steps.

Copy the directories provided in the ‘C firmware’ folder to your PC (src, ext, include, project) maintaining

the same directory structure. If you are using IAR EWB ver. 8.22.2 or newer, the project should open

successfully. The project is found in the ‘project’ directory of the provided files. Open the ‘cbm.eww’

workspace file in IAR EWB. If this opens successfully, with no broken project options, follow steps 3-7

below to install the correct CMSIS driver package for the ADuCM4050 microcontroller. It is also worth

checking the remaining steps to ensure that the Project Options are set correctly and all of the required

source files are present.

If the project cannot be opened successfully, follow all of the steps below to set up the project from

scratch in IAR Embedded Workbench.

API Interface

SmartMesh C - LIB

UART

SmartMesh
Mote

SmartMesh
eManager

USB VCOM
API Interface

Python GUI

ADuCM 4050 PC

ADC

Porting Layer

Application

This guide will
discuss the
Application Layer

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 5 of 16

1. Delete all of the files with the name ‘cbm.*’ in the ‘project’ folder (e.g. cbm.eww, cbm.ewt etc).

Delete the ‘project\settings’ folder. These will be recreated in the next steps. Ensure that the

‘ADuCM4050_moreSRAM.icf’ file is NOT deleted.

2. File->New Workspace

3. Project->CMSIS-Pack->Pack Installer

4. Select ADuCM4x50_DFP->3.2.0, right-click this package, and select install
5. Select ARM -> CMSIS -> 5.7.0, right-click and install, then press OK. Versions may vary for the
DFP and CMSIS packages, but the version installed should be the same or newer than the versions
shown.

6. Project->Create New Project->Empty CMSIS Pack Project

7. Select ADuCM4x50

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 6 of 16

8. Select Pack Components shown below. These components may be highlighted in orange until all

the correct options are highlighted, but should turn green when all options are selected

correctly.

9. Save the project in the ‘project’ folder. The source files will then be at the correct level relative

to the project.

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 7 of 16

10. Project->Add Files: Add the source files provided, to the project (user application files, and

SmartMESH library files) from the src, src/system, and ext/SmartMesh/src folders. These can be

organized in Groups if desired (Project->Add Group). There is no need to add the header files in

the various ‘include’ folders to the project explicitly as these will be added as compiler search

options in step 10.

11. Project->Options->C/C++ Compiler: Add the include directories shown below

$PROJ_DIR$\..\include and $PROJ_DIR$\..\ext\SmartMesh\include

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 8 of 16

12. Project->Options->General Options->Target: Select the floating-point unit VFPv4 single precision

13. Project->Options->General Options->Library Configuration: Ensure that DSP library is checked

14. Project->Options->Linker, Select Override default and enter

$PROJ_DIR$\ADuCM4050_moreSRAM.icf

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 9 of 16

15. Project->Options->Debugger->Setup. Select J-Link/J-Trace in the Driver selection. Ensure also

that in the Download tab for the Debugger options, Use flash loader is selected.

16. File->Save Workspace (in the ‘project’ directory)

17. Project->Rebuild All

The project should compile and link without errors and be ready to download and debug to the mote.

3 Code Structure
The function of the main program is to:

• Initiate a connection between mote and manager
• Sample acceleration data via ADC
• Transmit raw and FFT data
• Handle changing sampling parameters from the manager

The overall operation of the program is depicted in Figure 2, with the initialization, communication state machine,

and data handling state machine, scheduler timing, and data format depicted in the following sections.

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 10 of 16

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 11 of 16

3.1 Initialisation:

Name Description

Clock

dividers

Simple constants that set frequencies
corresponding to hardware clock frequencies.
These are used throughout the code, such as
when setting clock dividers later in
initialization.

Mote

parameters
My reply and my error are variables set for
the user to make use of. They are currently
not used in this version of the program.
NET_ID is used to store the network ID
number of the manager. Join_duty is a value
between 0 and 255, and decides how quickly
the mote will join the network, at the cost of
greater energy usage. Ms_per_packet is used
to set the millisecond gap between packets
received.

Initialisation

of Mote and

Variables

and

Peripherals
(UART)

Initializes variables necessary for application
function. Calls dn_uart_init which initializes
the UART of the microcontroller.

Start
Scheduler

Begins and verifies correct function of the
timer.

State

machines

The main body of the program. The CONNECT
and TRANSMIT state machines are described
in further detail below. They are responsible
for joining the mote to the network and
beginning the flow of data between mote and
manager (both directions).

Figure 3: Initialisation

Clock dividers

Mote
parameters

Initialisation of
Mote

Variables and
Peripherals

(UART)

Start
scheduler

State machine
loops

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 12 of 16

3.2 Communication State Machine:

Figure 4: Communication State Machine

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 13 of 16

State Description

Boot Status A state that is only used for program startup.

Mote Status This is the “idle” state for the mote. The mote begins the state machine here (after moving on
from boot status. The program will return to this state if it reaches a program timeout,
meaning it could not successfully connect to the network.

Open Socket Here the mote schedules a connection to the manager. The mote is initializing a TCP three-way
handshake by sending a request to begin a session with the manager.

Bind Socket If the manager returns an OK to the open socket request, the mote moves into the bind socket
state. A socket must be bound before data can be streamed from mote to manager.

Set NetID If the bind socket state returns a success, the set NetID state is entered. This sets the ID of the
network with a constant (NETID) chosen before program launch– the default is 2425.

Get NetID Stores the network ID chosen by the set NetID state as a variable.

Set JoinDC Sets the join duty cycle. This variable goes between 1 and 255 and determines how quickly a
mote joins the manager. Choosing a high duty cycle (255 -> 100%) will allow the network to
form more rapidly but the motes will also use more power.

Join The mote will attempt to search for a network with the same NetID and join it.

Request
Service

Request new / changed service level – triggers on bandwidth change event.

SendTo Final state of the mote. In this state, the mote will send the adcData Buffer to the manager
whenever the data is available.

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 14 of 16

3.3 Data Handle, State Machine:

 Figure 5: Data Handle State Machine

 more data is available for reading.
The mote then returns to the
NEW_PARAM phase. This cycle will
continue until the program closes or
the mote loses connection to the
network.

State Description

NEW_PARAM This state acts as a “double buffer”
for parameter changes to the mote.
It checks for updates to the
sampling frequency and resolution
at the beginning of the state
machine. These parameters cannot
be changed again until we return to
the new parameter state. This
ensures that key parameters do not
change during the execution of the
state machine as a result of
multithreading.

ACQ Here the mote acquires data from
the ADC. It reads in the data from
the UART to the adcBuffer. When
this stage has completed, we have a
buffer that is full of “RAW” adc data,
but the FFT has not yet been
calculated and appended to the
buffer.

CALC In this state we make use of some
basic ARM math functions to fourier
transform the raw data. It then
appends this fft data to the
adcBuffer, which is now ready to be
transmitted to the manager. The
transmission of data also begins in
this state.

TX TX is the transmission state, and the
mote will remain here until it
detects that the entire ADC data
buffer has been successfully sent.

WAIT Following transmission of the data,
the mote remains in the wait state
until a flag is set indicating that

NEW _ PARAM

ACQ

CALC

TX

WAIT

Mote parameters set
Acquire new ADC data

Data acquired
Calculate FFT

Data modified
Ready to transmit

Data sent
Wait for timer callback

Loop until
transmit finished

Loop state

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 15 of 16

Scheduler:

The scheduler timing for the embedded C code is outlined in fig.5. The code goes through a simple order of

operations: Idle, Sample, FFT, and Transmit. However, because SmartMesh IP has a packet size limit of 90 bytes,

any data sent that is greater than 90 bytes in length must be broken into smaller packets which are transmitted

separately. This is further described in fig.6.

Figure 6: Legend

Figure 7: Timing Diagram

Sample

FFT

Transmit Single Frame

Idle

WCBM Mote Firmware Guide

© Analog Devices, 2018 Rev. 3 | Page 16 of 16

Formatting data to be sent (shown for a sample size of 512 words):

90 90 90 90 90 ………… ...

RAW FFT

Handled by Python

Buffer

512

FFTMagOut

256

Figure 8 : Packets for transmission

