

Voyager3-1Z Developers Firmware Guide

Version 0.3

 Created: 6/4/2020

 Author: Sharkey, Tom

 Last Modified: 28/5/2020

 Modified by: Sharkey, Tom

1 Overview
This guide serves as a companion document to the Voyager 1Z Firmware guide. It explains the

operation of the Voyager 1Z in a greater level of detail than the original firmware guide, and is

aimed towards helping developers who may seek to make changes to the operation of the mote

and manager system, and to understand the system of communication between the two in a

greater level of detail.

It is advised that the reader has already explored the basic documentation for the Voyager 1Z.

- WCBM-01 Firmware Guide

- CBM_Setup

These documents are available on the Voyager-1Z Wiki.

Contents
1 Overview .. 2

2. Header ... 3

2.1 Framing ... 3

2.2 Format of Header .. 4

2.2.1 Axis .. 5

2.2.2 Version ... 5

3. Downstream communication .. 6

3.1 Sampling Frequency ... 6

3.2 Alarm Triggered .. 7

3.3 Axis Received ... 8

3.4 Updating Parameters ... 10

https://wiki.analog.com/resources/eval/user-guides/industrial_wireless_cbm_evaluation_tool_3axis#documentation

2. Header

2.1 Framing
Normal operation from mote to manager results in a constant stream of acceleration data,

separated into raw data and fft data. In order to create complete “frames”, such that streamed

data can be easily be interpreted by the GUI, the data must be prepended with a header which

contains information about the data contained within the frame. SmartMesh places a limit on the

size of the data that can be sent to 90 byte packets. Each individual piece of raw data is a 16-bit

integer, corresponding to a reading from the on board ADC.

A header byte is attached to the beginning of a frame which contains information about the frame

and creates a separation between frames, as demonstrated in Figure 1.

Figure 1: Forming a correct Data Frame

These checks are reflected in the code for the Python GUI, as shown in Figure 2 . Here, _rx_cnt

is a variable which counts the number of bytes that have been received. This process takes place

in the _handle_bytes function within the Mote class. If any of the conditions are met which

indicate that the frame is not the correct size, _rx_cnt is reset to 0.

Figure 2: Forming correct Data Frame (GUI)

2.2 Format of Header

The header is broken into 3 parts: The pattern marking the beginning of the header; the pattern

which marks the axis of the current data; and the pattern which marks the version of the

firmware.

16-bit Header
0xFF92

1111 1111 1001 0011

1111 1111 1001 0011

Marks beginning of header Marks axis of data [X,Y,Z] Indicates firmware version (.03)

Figure 3: Format of a Header

Sample headers

Header (Hex) Binary Interpretation

0xFF93 0b 1111 1111 1001 0011 Header frame, x-axis, version x.03

0xFFA4 0b 1111 1111 1010 0100 Header frame, y-axis, version x.04

Table 1: Sample Headers

As the unique all-1’s pattern of the top 8 bits is used to signify a header, if this pattern occurs in a

non-header packet, a partial frame error will occur. However, this value will only occur in the

data if the accelerometer reads a value above 99.6% of its maximum value.

2.2.1 Axis
- 0x0090  0000 0000 1001 0000

- 0x00A0  0000 0000 1010 0000

- 0x00C0  0000 0000 1100 0000

1001

1010

1100

Figure 4: Axis Selection to control Plotting

The top 4-bits of the lower byte in the header signify the axis to which the data belongs, as the

accelerometer records data in 3 axes. This information can be used by GUI to choose where to

plot the relevant raw and FFT data. Importantly, the GUI allows for the sending of specific axes

of data.

2.2.2 Version
Examples

- 0x0000 0000 0000 0002

- 0x0000 0000 0000 0003

The final 4 bits of the header are reserved for the version number of the currently running

firmware. This is used as a means of confirming correct operation between firmware and GUI,

which must be updated in tandem for the correct operation of the system. This version system is

simplistic in order to communicate the version of the program in the least number of bits

possible, and so keep the header overhead small. The version number sent is simply the two

numbers after the decimal point for the version (1.03). As only four bits are available, this

version number must not exceed .15.

N.B. The version of the firmware and the GUI must be updated as changes are made to the

system. Both versions are constants defined at the top of the GUI and in the

SmartMesh_RF_Cog.h file of the firmware respectively. If the versions of GUI and firmware do

not match, an error is issued to the user in the GUI command window.

3. Downstream communication

In order to control the operation of individual motes, a command packet must be sent to each

mote from the GUI. This command packet is used whenever the sampling frequency must be

updated for FFT calculation, when an alarm must be triggered, and to communicate which axis

information the GUI wants to receive.

Any update to mote operation is sent in the form of a command message, which triggers a

specific callback in the motes firmware, as shown in Figure 5.

Figure 5: Mote Command Received

3.1 Sampling Frequency

The variable sampling frequency is updated by the user and used to control the number of

timeouts, which controls the time between FFT acquisitions. The updated sampling frequency

sent by the user is used to adjust a timer controlling FFT readings. This timer has a timeout of

50us. The number of timeouts needed to create a specific time between ADC readings is

calculated based on the sampling frequency.

Examples

FFT Sampling Frequency (fS = 1000Hz)

Base Timeout (tB) = 50us

𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑡) =
1

𝑓𝑆

𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑡

𝑡𝐵

Example

Sampling Frequency = 1000Hz  20 timeouts (1000us)

 = 2000Hz  10 timeouts (500us)

3.2 Alarm Triggered
The first check that occurs after a command has been received in the firmware is to see if the

alarm variable has been set. An alarm command is sent from the GUI to the Mote that triggered

it, if a Mote value such as “Peak” acceleration exceeds a user-set value. The LED used is the

same green LED that blinks to indicate a successful network has been developed between a mote

and a manager. The green LED is disabled on Port 1, Pin 12, and the red LED is enabled on Port

1, Pin 13, as shown in Figure 6.

Figure 6: Setting Red LED (Smartmesh_RF_Cog.c)

Figure 7: Alarm Triggered

If the alarm variable is not set, the green LED returns to normal operation, blinking if a network

still exists between mote and manager.

3.3 Axis Received

Based on the axis that the user is interested in, only specific data is communicated by each mote.

This can be any combination of the X, Y and Z axes. As normal operation for the mote is to send

all 3 axes in order, changing which axis are sent simply adjusts the pointer to the data, as shown

in Figure 8.

X Y Z
pByteBuf

Case: XYZ

X Y Z
pByteBuf

Case: YZ

Figure 8: Sending User Defined Axes

As normal operation for the mote is to send all three axis in the order X  Y  Z, variations to

this operation simply control the buffer to begin at, and the buffers to exclude, as shown in

Figure 9. When all buffers have been sent, the variable txRun is set to 0 signalling the end of

transmission to the data handling state machine.

Figure 9: Select Axis Buffer to Begin Sending

Figure 10: Selecting Axis Buffers to Exclude

3.4 Updating Parameters

Mote variables such as sampling frequency are updated within the “NEW_PARAMS” state of

the data handling state machine in main_prog.c. This prevents errors that can occur when a

firmware variable is updated instantly upon receiving a downstream command. By defining a

specific state for updating these variables, the time at which these updates occur is known to the

user, preventing timing-related errors.

As the red LED that signals an alarm (e.g. the mote exceeding a certain value peak acceleration)

can be updated at any time, the check for this alarm flag occurs directly after the setting of

downstream variables in SmartMesh_RF_cog.c.

