
Configuring Custom HDL Models with AXI-Lite Registers using Simulink

Tools and Recommended Versions:
 Vivado: 2021.1 (Vitis 2021.1 should also be installed)
 MATLAB: R2021B_U4 or 2022B_U4

Make sure that the “SoC Blockset” and “SoC Blockset Support Package for Xilinx
Devices” Add-ons are installed.

Figure 1. SoC Blockset Add-On

Figure 2. SoC Blockset Support Package for Xilinx Devices Add-On

 Recommended terminal for Windows: Cygwin (https://cygwin.com)

Instructions to Build the Toolbox from Terminal:

>git clone https://github.com/analogdevicesinc/HighSpeedConverterToolbox.git 

>cd HighSpeedConverterToolbox 

>git submodule update --init --recursive 

>git checkout lldk_axi4lite_examples

>cd CI/scripts 

>make build HDLBRANCH=dev_lldk_rebase

>export ADI_IGNORE_VERSION_CHECK=TRUE  

Launch Matlab from the root of HighSpeedConverterToolbox folder .

Figure 3. High Speed Converter Toolbox Sources

right click on test -> Add to Path -> Selected folders and subfolders

right click on hdl -> Add to Path -> Selected folders and subfolders

In the Matlab command window set the path to Vivaldo installation folder. The tool path should
be replaced with the user’s Vivado path.

 e.g. hdlsetuptoolpath(‘ToolName’, ‘Xilinx Vivado’, ’ToolPath’,
‘</opt/Xilinx/Vivado/2021.1/bin/vivado>’)

Expand the test folder and double click on the desired Simulink test model, as shown in Figure 4.

Figure 4. Simulink Test Model

After opening the Simulink model, right click on the HDL_DUT and launch the HDL Workflow
Advisor as shown in Figure 5, and Figure 6.

Figure 5. HDL Workflow Advisor Launching

Figure 6. Simulink Device Under Test

Close this expected warning that will appear, as shown in Figure 7.

Figure 7. Expected HDL Workflow Advisor Warning

1.1 Select IP Core Generation, choose the desired project and carrier from the dropdown list and

check the Allow unsupported version box. Change the project folder name if desired. Finally
press the Run this Task button.

Figure 8. Set Target Device and Synthesis Tool

1.2 Choose the TX configuration, then run the task.

Figure 9. Set Target Reference Design

1.3 Assign the data ports as described in Figure 9 and Figure 10, add as many Input/Output
registers as you need. Table 1 shows port descriptions for HDL DUT Tx Reference Design.

Figure 10. Set Input Target Interface

Figure 11. Set Output Target Interface

Interface signal
name

Width Description

IP Data 0 IN 16
Custom IP data input signal. This signal is connected to the AXI_LTC2387_0
IP ADC DATA port in the ADI reference design.

IP Data 1 IN 16
Custom IP data input signal. This signal is connected to the AXI_LTC2387_1
IP ADC DATA port in the ADI reference design.

IP Data 2 IN 16
Custom IP data input signal. This signal is connected to the AXI_LTC2387_2
IP ADC DATA port in the ADI reference design.

IP Data 3 IN 16
Custom IP data input signal. This signal is connected to the AXI_LTC2387_3
IP ADC DATA port in the ADI reference design.

IP Valid Tx Data
IN

1
Input signal that has logic 1 value for a clock cycle period when the data starts
to be valid.

CN0585 DAC
Data 0 OUT

16
AD3552R_0 DAC 0 channel data. To be used as input into the AD3552R
interface IP.

CN0585 DAC
Data 1 OUT

16
AD3552R_0 DAC 1 channel data. To be used as input into the AD3552R
interface IP.

CN0585 DAC
Data 2 OUT

16
AD3552R_1 DAC 0 channel data. To be used as input into the AD3552R
interface IP.

CN0585 DAC
Data 3 OUT

16
AD3552R_1 DAC 1 channel data. To be used as input into the AD3552R
interface IP.

IP Load Tx Data
OUT

1
Custom IP output signal used to notify the design that the IP is ready to receive
new input data. Output signal that has to be logic '1' for a clock cycle period
when the data starts to be valid.

Table 1: HDL DUT Ports for Transmit Reference Design (Tx)

AXI registers are defined in the Simulink model as input or output ports (AXI-lite option is
selected in “Target Platform Interfaces” column. Register addresses are set in “Interface
Mapping” column and written like x”<number of bits that can be used, hex address>”.) AXI
registers that are input ports are write-only, and AXI registers that are output ports are read-only.
If you connect those two together in the model, you now have a read-only register connected to
the write-only register so it is readable, but at a different address.

1.4 Run the task, as shown in Figure 12.

Figure 12. Check Model Settings

2.1 Select Verilog for the HDL Code Generation Settings, then run task as shown in Figure 13.

Figure 13. Set HDL Options

2.2 Check the Enable readback on AXI4 slave write registers as described in Figure 14.

Figure 14. Generate RTL code and IP Core

3.1 Run the task (this will create the Vivado block design in the hdl_prj/vivado_ip_prj folder, or
the project folder name that was chosen in 1.1), as shown in Figure 15.

Figure 15. Create Project

3.2 Run the task in Figure 16.

Figure 16. Generate Software Interface

3.3 Choose the “Custom” option for the Tcl file synthesis build, then Browse for the adi_build.tcl
file located under HighSpeedConverterToolbox/CI/scripts, as shown in Figure 17. A bash
prompt will open, and you can see the entire build process log file, as shown in Figure 17 and
Figure 18. This step usually takes about an hour.

Figure 17. Build FPGA Bitstream

Figure 18. Build FPGA Bitstream Task Complete Message

In the end you will get this message, and the generated BOOT.BIN file will be located here,
Figure 19.

Figure 19. Location of BOOT.BIN File

3.4 Program target device

This tab in the HDL Workflow Advisor is incompatible with The ADI SD card flow. Instead,
choose one of the following methods to update the BOOT.BIN file on the SD card.

After the BOOT.BIN file is generated, you have 2 options:

 Copy the BOOT.BIN file on the SD Card directly.
 Send it via network using a terminal (CMD for Windows machine):

 1. Go to the folder where the BOOT.BIN file is:

 HighSpeedConverterToolbox/hdl_prj/vivado_ip_prj/boot

 2. Run this command:

 scp BOOT.BIN root@<your_board_ip>:/boot

Finally, reboot the board.

Register Access Options:

AXI-Lite registers in HDL_DUT can be accessed using one of the below three options:

1. PyADI-IIO
 git clone https://github.com/analogdevicesinc/pyadi-iio.git 

git checkout cn0585_axi_reg

cd pyadi-iio   

export PYTHONPATH=C:/work/python_LLDK/documentation_clone/pyadi-iio/ 

The path is the location where you cloned the pyadi-iio repository.

> ../pyadi-iio > pip install . 

> ../pyadi-iio > pip install -r requirements.txt 

> ../pyadi-iio > pip install -r requirements_dev.txt 

> ../pyadi-iio> python examples/cn0585_fmcz_example.py ip:<your_board_ip>

The updated version of the console output will contain these 2 new lines:

AXI4-Lite 0x108 register value: 0xC

AXI4-Lite 0x10c register value: 0xD

These are the functions that were added to be able to access the HDL DUT IP registers trough
AXI4-Lite:

hdl_dut_write_channel.axi4_lite_register_write(0x100, 0xc)

hdl_dut_write_channel.axi4_lite_register_write(0x104, 0xd)

reg_value = hdl_dut_read_channel.axi4_lite_register_read(0x108)

reg_value1 = hdl_dut_read_channel.axi4_lite_register_read(0x10c)

print("AXI4-Lite 0x108 register value:", reg_value)

print("AXI4-Lite 0x10c register value:", reg_value1)

2. MATLAB
1. Open the CN0585StreamingTest.m file in Matlab

2. Update the board_ip variable with your board IP.

3. Run the CN0585StreamingTest.m example.

The output described by Figure 20 can be observed in the Command Window.

Figure 20. MATLAB Command Window Output

These are the functions that were added to be able to access the HDL DUT IP registers trough
AXI4-Lite:

write_reg = soc.libiio.aximm.WriteHost(devName='mwipcore0:mmwr-
channel0',IPAddress=board_ip);

read_reg = soc.libiio.aximm.WriteHost(devName='mwipcore0:mmrd-
channel1',IPAddress=board_ip);

write_reg.writeReg(hex2dec('100'),85)

write_reg.writeReg(hex2dec('104'),22)

3. Simulink
1. From the HighSpeedConverterToolbox/test folder open the

cn0585_host_axi4_lite_read_write_example.slx file.

2. Update the IP address for all the blocks existing in the host diagram.

Figure 21. Host Simulink Block Diagram

