
1

AD9082/AD9081/AD9988/AD9986 MATLAB

Application User Guide

2

Table of Contents

1. Hardware + Software Requirements………………………….3

2. Documentations………………………………………………………..3

3. Basic Set-Up………………………………………………………….4 - 5

4. Import Functions……………………………………………………….6

5. Function List…….……………………………………………………7 - 8

6. Repeat Automation……………………………………………………9

7. Plotting FFT from Excel…………………………………………….10

8. Works Cited……………………………………………………………..11

3

HARDWARE NEEDED

• ADS9 FPGA Board

• AD9XXX + EVALUATION BOARD

SOFTWARE NEEDED

• Analysis, control, evaluate (ACE) software

• DPGDownloaderLite software (Included in ACE installation)

• MATLAB

DOCUMENTATIONS

AD9XXX.DPG_Lite_Example.m is a functional MATLAB automation example that free user from

repetitively using ACE and DPGLite. This example automates generating a tone and sends it using

DPGLite.

AD9XXX.m file is used to configure and control ACE (Software that allows the user to set up the MxFE®

in various modes and to capture analog-to-digital converter (ADC) data for analysis).

NDPG9XXX.m file is used to configure and control DPGDownloaderLite (Software that generates and

transmits vectors to the digital-to-analog converters (DACs), which can then be sent to a spectrum

analyzer for further analysis).

Auotmation.m file used to run the automation with the same configuration and set-up repeatedly.

Plot.m file is used to plot a fast fourier transform (FFT) from the Excel file generated by the data

gathered from the automation.

IMPORTANT

Make sure to open ACE and apply configuration to the hardware before running the automation. ACE

should be up the whole time for the automation to successfully function.

4

Basic Setup

Enable and Match IPC Port

1. Open setting on the bottom left corner of ACE.

2. Select IPC Server tab and check the Server enabled box.

3. In the Ports section of IPC Server tab, confirm the number displayed and make sure the enabled

box is checked.

4. Open up AD9XXX.DPG_Lite_Example.m, in line 26, confirm that the IPC_Port number match

with the number displayed on ACE setting, if not, change the number in

AD9XXX.DPG_Lite_Example.m file manually.

MATLAB File Setup

AD9XXX.m

a. In line 41 and 42, replace the AD9xxxs on the end of each command with the name of user’s

AD9xxx.

Make sure this matches what you see in ACE:

b. In line 608, replace C:\Users***\AppData\Local\Analog

Devices\ACE\ExportData\AD9082\.acesamples with the path user desires, keep

.acesamples at the end of the path.

5

NDPG9XXX.m

a. Open the directories as mentioned in line 28 and 29 (C:\ProgramData\Analog

Devices\ACE\Plugins & C:\Program Files (x86)\Analog Devices\ACE).

b. Confirm and match the highlighted paths from line 32-41 with directories opened. Each path

should have a corresponding .dll file in the folders within the directories.

c. If the highlighted paths do not match, change the paths in the NDPG9XXX.m file.

Basic setup complete, the user may now run the main file (AD9XXX.DPG_Lite_Example.m).

6

Import Functions

There are functions created in AD9XXX.m and NDPG9XXX.m files to help customize the automation.

• To call functions in AD9XXX.m, add a line of command “mxfe.function name()” to

AD9XXX.DPG_Lite_Example.m file. This would import the corresponding function in AD9XXX.m

file into the automation.

• To call functions in NDPG9XXX.m, add a line of command “dpg.function name()” to

AD9XXX.DPG_Lite_Example.m file. This would import the corresponding function in

NDPG9XXX.m file into the automation.

• Some functions might require the user to input values for variables manually.

7

Function List

To use a function, user must call it in the AD9XXX.DPG_Lite_Example.m file.

Mask variable is created for user to adjust each subcomponent individually. User will need to enter a

number sequence to decide which subcomponent they will adjust.

For instance, mxfe.ADCsetFineNCOfreq(0, ‘11111111’) will adjust all 8 NCO. ‘01010101’ will adjust NCO

1, 3, 5, and 7, leave NCO 0, 2, 4, and 6 unchanged.

The digit of the number sequence corresponds with the number label given to each subcomponent.

Some components require an 8 digit mask, while some requires only 4 digit, check the comments in

AD9xxx.m file for requirements.

mxfe.ADCsetFineNCOfreq(freq, mask)

This function configures the Fine NCO frequency of ADC.

• Replace freq with the frequency user desires.

• Replace mask with an 8 digit number sequences (Remember to enclose the sequence in ‘ ’).

mxfe.DACsetFineNCOfreq(freq, mask)

This function configures the Fine NCO frequency of DAC.

• Replace freq with the frequency user desires.

• Replace mask with an 8 digit number sequences (Remember to enclose the sequence in ‘ ’).

mxfe.DACsetDCOffsetGain(gain, mask)

This function configures the DDC Offset gain of DAC.

• Replace gain with the decibel user desires.

• Replace mask with an 8 digit number sequences (Remember to enclose the sequence in ‘ ’).

mxfe.ADCFineDDCGain(ToF, mask)

This function configures the Fine DDC gain of ADC.

• Replace ToF with the 0 or 1 (0 represent off[0dB], 1 represent on[6dB]).

• Replace mask with an 8 digit number sequences (Remember to enclose the sequence in ‘ ’).

8

mxfe.ADCCoarseDDCGain(ToF, mask)

This function configures the Coarse DDC gain of ADC.

• Replace ToF with the 0 or 1 (0 represent off[0dB], 1 represent on[6dB]).

• Replace mask with an 4 digit number sequences (Remember to enclose the sequence in ‘ ’).

mxfe.DACFSCSetting(mamp, mask)

This function configures the Full-Scale current of DAC.

• Replace mamp with the microampere user desires (1000000 microampere = 1 ampere).

• Replace mask with an 4 digit number sequences (Remember to enclose the sequence in ‘ ’).

mxfe.SampleCount(count)

This function configures the number of samples that the MxFE will capture.

• Replace count with the number of samples user desires (number must be 2^x, where 0 ≤ x ≤ 20).

9

Repeat Automation

To run the AD9XXX.DPG_Lite_Example.m file multiple times without changing the desired configuration,

the user may run the Automation.m file to gather data.

Pull up Automation.m file.

In line 4, set x = (# of times user wants the automation to run).

Replace the ‘filename’ in line 8 if it does not match with user’s AD9XXX.DPG_Lite_Example.m.

User may now run the Automation.m file, the gathered data sets will appear in the path user presets in

AD9xxx.m.

10

Plotting FFT from Excel

User may also plot FFT from Excel data gathered by the automation in MATLAB.

MATLAB only plots .xlsx excel files, but our automation gathers .csv excel files. Thus, user need to

change the file format.

To start, find the FFT.csv file in the path user presets in AD9xxx.m.

Open the file in Excel and save as Excel Workbook (*.xlsx) file.

Move the new FFT.xlsx file to the same directory as Plot.m file (User may double click on the Current

Folder space and select “Open Current Folder in Explorer to find the directory).

Pull up Plot.m file.

Replace the ‘filename’ in the parenthesis following “readtable” in line 3 with user’s FFT.xlsx.

User may also change the line after rawTable to match with the input/output they want to use. Simply

replace the line with the header of the column user want to use as input/output.

User may now run the Plot.m file, a MATLAB window should pop up with the FFT figure.

