Wiki

This version is outdated by a newer approved version.DiffThis version (05 Feb 2014 18:38) was approved by Lars-Peter Clausen.The Previously approved version (17 Oct 2012 14:58) is available.Diff

This is an old revision of the document!


AD5443 - Microcontroller No-OS Driver

Supported Devices

Evaluation Boards

Overview

The AD5426/AD5432/AD5443 are CMOS 8-, 10-, and 12-bit current output digital-to-analog converters (DACs), respectively. These devices operate from a 2.5 V to 5.5 V power supply, making them suitable for battery-powered applications and many other applications.

These DACs use a double buffered, 3-wire serial interface that is compatible with SPI, QSPI™, MICROWIRE™, and most DSP interface standards. In addition, a serial data out pin (SDO) allows for daisy-chaining when multiple packages are used. Data readback allows the user to read the contents of the DAC register via the SDO pin. On power-up, the internal shift register and latches are filled with 0s and the DAC outputs are at zero scale.

Applications
  • Portable battery-powered applications
  • Waveform generators
  • Instrumentation
  • Programmable amplifiers and attenuators
  • Digitally controlled calibration
  • Programmable filters and oscillators
  • Composite video
  • Ultrasound
  • Gain, offset, and voltage trimming

The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for Renesas platforms.

HW Platform(s):

Driver Description

The driver contains two parts:

  • The driver for the AD5443 part, which may be used, without modifications, with any microcontroller.
  • The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.

The Communication Driver has a standard interface, so the AD5443 driver can be used exactly as it is provided.

There are three functions which are called by the AD5443 driver:

  • SPI_Init() – initializes the communication peripheral.
  • SPI_Write() – writes data to the device.
  • SPI_Read() – reads data from the device.

SPI driver architecture

The following functions are implemented in this version of AD5443 driver:

Function Description
unsigned char AD54xx_Init(void) Initializes the AD54xx device.
unsigned short AD54xx_Function(unsigned char function, unsigned short data) Selects a function of the DAC.
void AD54xx_SetDac(unsigned short dacValue) Writes a value to DAC register.
unsigned short AD54xx_GetDac(void) Writes the value of the DAC register.
void AD54xx_Clear(unsigned char type) Clears DAC output to zero or midscale.

Downloads

Renesas RX63N Quick Start Guide

This section contains a description of the steps required to run the AD5443 demonstration project on a Renesas RX63N platform.

Required Hardware

Required Software

Hardware Setup

An EVAL-AD5443SDZ has to be interfaced with the Renesas Demonstration Kit (RDK) for RX63N:

  EVAL-AD5443SDZ Pin /SYNC (CS)      → YRDKRX63N J15 connector Pin 1
  EVAL-AD5443SDZ Pin SDIN  (MOSI)    → YRDKRX63N J15 connector Pin 2
  EVAL-AD5443SDZ Pin SDO   (MISO)    → YRDKRX63N J15 connector Pin 3
  EVAL-AD5443SDZ Pin SCLK  (SCLK)    → YRDKRX63N J15 connector Pin 4
  

Reference Project Overview

The reference project initializes the device and writes a value to DAC register once every second.

Software Project Setup

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RX63N for controlling and monitoring the operation of the ADI part.

  • Run the High-performance Embedded Workshop integrated development environment.
  • A window will appear asking to create or open project workspace. Choose “Create a new project workspace” option and press OK.
  • From “Project Types” option select “Application”, name the Workspace and the Project “ADIEvalBoard”, select the “RX” CPU family and “Renesas RX Standard” tool chain. Press OK.

  • A few windows will appear asking to configure the project:
    • In the “Select Target CPU” window, select “RX600” CPU series, “RX63N” CPU Type and press Next.
    • In the first “Option Setting” window change only the Precision of double from single to “Double precision” and press Next.
    • In the second “Option Setting” window keep default settings and press Next.
    • In the “Setting the Content of Files to be generated” window select ”None” for the ”Generate main() Function” option and press Next.
    • In the “Setting the Standard Library” window press “Enable all” and then Next.
    • In the “Setting the Stack Area” window check the “Use User Stack” option and press Next.
    • In the “Setting the Vector” window keep default settings and press Next.
    • In the “Setting the Target System for Debugging” window choose “RX600 Segger J-Link” target and press Next.
    • In the “Setting the Debugger Options” and “Changing the Files Name to be created” windows keep default settings, press Next and Finish.
  • The workspace is created.

  • The RPDL (Renesas Peripheral Driver Library) has to integrated in the project. Unzip the RPDL files (double-click on the file “RPDL_RX63N.exe”). Navigate to where the RPDL files were unpacked and double-click on the “Copy_RPDL_RX63N.bat” to start the copy process. Choose the 100 pins package and little endian option, type the full path where the project was created and after the files were copied, press any key to close the window.
  • The new source files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Double click on the RPDL folder. From the “Files of type” drop-down list, select “C source file (*.C)”. Select all of the files and press Add.

  • To avoid conflicts with standard project files remove the files “intprg.c” and “vecttbl.c” which are included in the project. Use the key sequence Alt, P, R to open the “Remove Project Files” window. Select the files, click on Remove and press OK.

  • Next the new directory has to be included in the project. Use the key sequence Alt, B, R to open the “RX Standard Toolchain” window. Select the C/C++ tab, select “Show entries for: Include file directories” and press Add. Select “Relative to: Project directory”, type “RPDL” as sub-directory and press OK.

  • The library file path has to be added in the project. Select the Link/Library tab, select “Show entries for: Library files” and press Add. Select “Relative to: Project directory”, type “RPDL\RX63N_library” as file path and press OK.

  • Because the “intprg.c” file was removed the “PIntPrg” specified in option “start” has to be removed. Change “Category” to “Section”. Press “Edit”, select “PIntPRG” and press “Remove”. From this window the address of each section can be also modified. Set the second address to 0xFFF00000 and the third one to 0xFFF00100. After all the changes are made press OK two times.

  • At this point the files extracted from the zip file located in the “Software Tools” section have to be added into the project. Copy all the files from the archive into the project folder.

  • Now, the files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Navigate into ADI folder. From the “Files of type” drop-down list, select “Project Files”. Select all the copied files and press Add.

  • Now, the project is ready to be built. Press F7. The message after the Build Process is finished has to be “0 Errors, 0 Warnings”. To run the program on the board, you have to download the firmware into the microprocessor’s memory.
17 Sep 2012 18:24 · Dragos Bogdan

More information

01 Jun 2012 12:17
resources/tools-software/uc-drivers/renesas/ad5443.1391621935.txt.gz · Last modified: 05 Feb 2014 18:38 by Lars-Peter Clausen