Wiki

This version (09 Jan 2021 00:58) was approved by Robin Getz.The Previously approved version (21 Nov 2013 14:07) is available.Diff

ADMP441 Pmod Xilinx FPGA Reference Design

Introduction

The ADMP441 is a high performance, low power, digital output, omnidirectional MEMS microphone with a bottom port. The complete ADMP441 solution consists of a MEMS sensor, signal conditioning, an analog-to-digital converter, antialiasing filters, power management, and an industry standard 24-bit I²S interface. The I²S interface allows the ADMP441 to connect directly to digital processors, such as DSPs and microcontrollers, with-out the need for an audio codec in the system. The ADMP441 has a high SNR and high sensitivity, making it an excellent choice for far field applications. The ADMP441 has a flat wideband frequency response, resulting in natural sound with high intelligibility.

HW Platform(s):

Quick Start Guide

The bit file provided in the project *.zip file combines the FPGA bit file and the SDK elf files. It may be used for a quick check on the system. All you need is the hardware and a PC running a UART terminal and the programmer (IMPACT).

Required Hardware

Required Software

  • Xilinx ISE 14.4 (Programmer (IMPACT) is sufficient for the demo and is available on Webpack).
  • A UART terminal (Tera Term/Hyperterminal), Baud rate 115200 for the Avnet LX-9 Microboard and ZedBoard or 9600 for the Digilent Nexys™3 Board.

Running Demo (SDK) Program

If you are not familiar with LX9 and/or Xilix tools, please visit
products/boards-and-kits/AES-S6MB-LX9.htm for details.
If you are not familiar with Nexys™3 and/or Xilix tools, please visit
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,897&Prod=NEXYS3 for details.
If you are not familiar with ZedBoard and/or Xilix tools, please visit
http://www.em.avnet.com/en-us/design/drc/Pages/Zedboard.aspx for details.

Avnet LX9 MicroBoard Setup

Extract the project from the archive file (ADMP441_lx9.zip) to the location you desire.

To begin, connect the PmodMIC2 to J5 connector of LX9 board (see image below). You can use an extension cable for ease of use. Connect the USB cable from the PC to the USB-UART female connector of the board for the UART terminal. The board will be programmed through its USB male connector.

PmodMIC2 and LX-9

Digilent Nexys™3 Spartan-6 FPGA Board

Extract the project from the archive file (ADMP441_lx9.zip) to the location you desire.

To begin, connect the PmodMIC2 to JA connector of Nexys™3 board (see image below). You can use an extension cable for ease of use. Connect the USB cables from the PC to the board, one for programming (Digilent USB device) and one for the UART terminal (FT232R USB UART).

PmodMIC2 and Nexys™3

Avnet ZedBoard

To begin, connect the PmodMIC2 to JD connector of ZedBoard (see image below). You can use an extension cable for ease of use. Connect the USB cables from the PC to the board, one for programming (Digilent USB device) and one for the UART terminal (FT232R USB UART).

PmodMIC2 and ZedBoard

FPGA Configuration for Nexys3 and LX-9 MicroBoard

Start IMPACT, and double click “Boundary Scan”. Right click and select Initialize Chain. The program should recognize the Spartan 6 device (see screenshot below). Start a UART terminal (set to appropiate baud rate) and then program the device using the bit file provided in the project *.zip archive, located in the “sw” folder (../admp441/sw/ADMP441.bit). Launch “data_capture.bat” from the “../DataCapture” folder.

Programming FPGA in IMPACT

FPGA Configuration for ZedBoard

Run the download.bat script from the “../bin” folder downloaded from the github (see the links in the download section of the wiki page). The script will automatically configure the ZYNQ SoC and download the *.elf file afterwards.

If the download script fails to run, modify the Xilinx Tools path in download.bat to match your Xilinx Installation path.

If programming was successful, you should see messages in the UART terminal.

UART

Data Capture


For reasons NOT depending on Analog Devices, the JTAG connection through which the stored data on the LX-9/Nexys3 is transfered to the *.wav file is very slow. The process takes about 2 hours.

Functional Description

The reference design is a custom I2S interface used to communicate with the device. An interrupt signal is used to tell the user when new data has been read, an also if data was read when WS was low or high.

The ZedBoard design uses DMA to transfer data from the I2S Core to DDR.


  • Connecting the PmodMIC2 to the boards using an extension cable provides ease of use.
  • UART must be set to 115200 Baud Rate for the Avnet LX-9 Microboard and ZedBoard or 9600 Baud Rate for the Digilent Nexys™3 Board.


Downloads

More information

resources/fpga/xilinx/pmod/admp441.txt · Last modified: 09 Jan 2021 00:57 by Robin Getz