world leader in high performance signal processing
This version (25 Feb 2013 14:13) was approved by AdrianC.

AD7367 FMC-SDP Interposer & Evaluation Board / Xilinx KC705 Reference Design

Supported Devices

Evaluation Boards

Overview

This document presents the steps to setup an environment for using the EVAL-AD7367SDZ evaluation board together with the Xilinx KC705 FPGA board and the Xilinx Embedded Development Kit (EDK). Below is presented a picture of the EVAL-AD7367SDZ Evaluation Board with the Xilinx KC705 board.

 EVAL-AD7367SDZ and Xilinx KC705 board

For component evaluation and performance purposes, as opposed to quick prototyping, the user is directed to use the part evaluation setup. This consists of:

  • 1. A controller board like the SDP-B ( EVAL-SDP-CS1Z)
  • 2. The component SDP compatible product evaluation board
  • 3. Corresponding PC software ( shipped with the product evaluation board)

The SDP-B controller board is part of Analog Devices System Demonstration Platform (SDP). It provides a high speed USB 2.0 connection from the PC to the component evaluation board. The PC runs the evaluation software. Each evaluation board, which is an SDP compatible daughter board, includes the necessary installation file required for performance testing.

Note: it is expected that the analog performance on the two platforms may differ.

28 Sep 2012 10:32 · Adrian Costina

Below is presented a picture of SDP-B Controller Board with the EVAL-AD7367SDZ Evaluation Board.

 SDP-B Controller Board and EVAL-AD7367SDZ

The EVAL-AD7367SDZ evaluation board is a member of a growing number of boards available for the SDP. It was designed to help customers evaluate performance or quickly prototype new AD7367 circuits and reduce design time.

The AD7367 is a dual 12-bit, high speed, low power, successive approximation analog-to-digital converter that feature throughput rates up to 1 MSPS. The device contains two ADCs, each preceded by a 2-channel multiplexer, and a low noise, wide bandwidth track-and-hold amplifier. The AD7367 is fabricated on the Analog Devices, Inc., industrial CMOS process (iCMOS), which is a technology platform combining the advantages of low and high voltage CMOS. The iCMOS process allows the AD7367 to accept high voltage bipolar signals in addition to reducing power consumption and package size. The AD7367 can accept true bipolar analog input signals in the ±10 V range, ±5 V range, and 0 V to 10 V range.

More information

Getting Started

The first objective is to ensure that you have all of the items needed and to install the software tools so that you are ready to create and run the evaluation project.

Required Hardware

Required Software

  • Xilinx ISE 14.4
  • A UART terminal (ex. TeraTerm / Hyperterminal).

Downloads

The following table presents a short description the reference design archive contents.

Folder Description
Bit Contains the KC705 configuration file that can be used to program the system for quick evaluation.
DataCapture Contains the script used to read data from the ADC and save it into a file on the PC.
Hdl Contains the HDL driver for the AD7367 ADC.
Microblaze Contains the EDK 14.4 project for the Microblaze softcore that will be implemented in the KC705 FPGA.
Software Contains the source files of the software project that will be run by the Microblaze processor.

Run the Demonstration Project

Hardware Setup

Before connecting the ADI evaluation board to the Xilinx KC705 make sure that the VADJ_FPGA voltage of the KC705 is set to 3.3V. For more details on how to change the setting for VADJ_FPGA visit the Xilinx KC705 product page.

  • Use the FMC-SDP interposer to connect the ADI evaluation board to the Xilinx KC705 board on the FMC LPC connector.
  • Connect the JTAG and UART cables to the KC705 and power up the FPGA board.
  • Start IMPACT, and double click “Boundary Scan”. Right click and select Initialize Chain. The program should recognize the Kintex 7 device (see screenshot below).

  • Program the KC705 FPGA using the ”Bit/download.bit” file provided in the reference design archive.
  • Power the ADI evaluation board.
  • Start a UART terminal and set the baud rate to 115200 bps.

At this point everything is set up and it is possible to start the evaluation of the ADI hardware. To capture data from the ADC run the data_capture.bat script located in the DataCapture folder from the reference design .zip file. Every time the script is run a new batch of 8192 samples are read from the ADC at 500KSPS sampling rate and saved into the Acquisition.csv file located in the same folder as the data capture script. On the UART terminal messages will be displayed to show the status of the program running on the FPGA as shown in the picture below.

The first time the data capture script is run it is possible that an error will occur while the script is trying to connect to the system. Just run the script again and the error shouldn't appear anymore.

More information

28 May 2012 15:18