world leader in high performance signal processing
This version (04 Dec 2014 14:26) was approved by ACozma.The Previously approved version (25 Sep 2014 06:02) is available.Diff

Xilinx Reference Designs

Hardware

Below is a list of hardware, IP Cores, or reference designs. While this content is believed to be reliable, many have not been validated, verified or reviewed by Analog Devices. These boards/platforms may or may not be suitable for end product integration or development, and may not meet datasheet specifications. Since many of these platforms or IP Cores are not designed or reviewed by Analog Devices, care should be taken to ensure that these will meet your needs before purchase. While ADI will always provide chip level support on the EngineerZone™, board level, or reference design support is given by the manufacture or creator of the specific materials.

References to manufacturer or third party software, websites, or to any specific commercial or non-commercial products are suggestions only and do not necessarily constitute or imply an endorsement, recommendation, or favoring by Analog Devices.

22 Sep 2011 16:30

Add on Boards

ADI products can be found on many boards which use industry standard connectors, such as PMODs and FMC.

FMC

Part Number / Purchase Description ADI Parts
AD7960-FMC Reference Design: Analog Devices

The AD7960-FMC board is based on the AD7960, which is an 18-bit, 5 MSPS charge redistribution successive approximation (SAR), analog-to-digital converter (ADC). The SAR architecture allows unmatched performance both in noise and in linearity. The AD7960 contains a low power, high speed, 18-bit sampling ADC, an internal conversion clock and an internal reference buffer. On the CNV± edge, the AD7960 samples the voltage difference between the IN+ and IN- pins. The voltages on these pins swing in opposite phase between 0 V and 4.096 V/5 V. The reference voltage is applied to the part externally. All conversion results are available on a single LVDS self-clocked or echo-clocked serial interface.
AD7960
AD7961-FMC Reference Design: Analog Devices

The AD7961-FMC board is based on the AD7961, which is an 16-bit, 5 MSPS charge redistribution successive approximation (SAR), analog-to-digital converter (ADC). The SAR architecture allows unmatched performance both in noise and in linearity. The AD7961 contains a low power, high speed, 16-bit sampling ADC, an internal conversion clock and an internal reference buffer. On the CNV± edge, the AD7961 samples the voltage difference between the IN+ and IN- pins. The voltages on these pins swing in opposite phase between 0 V and 4.096 V/5 V. The reference voltage is applied to the part externally. All conversion results are available on a single LVDS self-clocked or echo-clocked serial interface.
AD7961
AD9467-FMC tile_ad9467_150.jpg Reference Design: Analog Devices

The AD9467-FMC board is based on the AD9467, which is a 16-Bit, 250 MSPS analog-to-digital converter that. The AD9467 provides a new level of signal processing performance for test and measurement instrumentation, defense electronics, and communications applications where high resolution over a wide bandwidth is needed.
AD9467 AD9517-4
AD9739A-FMC tile_ad9739a_150.jpg Reference Design: Analog Devices

The new AD9739A FMC board is based on the AD9739A is a 14-bit, 2.5 GSPS high performance RF DAC capable of synthesizing wideband signals from dc up to 3 GHz.
AD9739A ADF4350
AD-FMCOMMS1-EBZ Reference Design: Analog Devices

The AD-FMCOMMS1-EBZ is an analog front end hardware platform that addresses a broad range of research, academic, industrial and defense applications. The AD-FMCOMMS1-EBZ enables RF applications from 400MHz to 4 GHz. The module is customizable to a wide range of frequencies by software without any hardware changes, providing options for GPS or IEEE 1588 Synchronization, and MIMO configurations.
AD9122 ADL5375 ADF4351 ADL5602 ADL5380 AD8366 AD9643 ADF4351 AD9548 AD9523-1
AD-FMCOMMS2-EBZ ad_fmcomms2_ebz.jpg Reference Design: Analog Devices

The AD-FMCOMMS2-EBZ is a high-speed analog module designed to showcase the AD9361, a high performance, highly integrated RF agile transceiver intended for use in RF applications, such as 3G and 4G base station applications and software defined radios.
AD9361
AD-FMCOMMS3-EBZ ad_fmcomms2_ebz.jpg Reference Design: Analog Devices

The AD-FMCOMMS3-EBZ is a high-speed analog module designed to showcase the AD9361, a high performance, highly integrated RF agile transceiver intended for use in RF applications, such as 3G and 4G base station applications and software defined radios.
AD9361
AD-FMCOMMS5-EBZ ad-fmcomms5-ebz.jpg Reference Design: Analog Devices

The AD-FMCOMMS5-EBZ is a high-speed analog module designed to showcase the AD9361, a high performance, highly integrated RF agile transceiver intended for use in RF applications, such as 3G and 4G base station applications and software defined radios. The board includes two AD9361s in a 4 x 4 RF configuration, which demonstrates how to synchronize multiple devices together.
AD9361
AD-FMCOMMS6-EBZ Reference Design: Analog Devices

The AD-FMCOMMS6-EBZ is a discrete hardware receiver platform that addresses L and S band radar applications. The AD-FMCOMMS6-EBZ enables RF applications from 400MHz to 4 GHz. The module is configurable to a wide range of frequencies small filter hardware changes, providing options for RF up to 4GHz and IF up to 155MHz ad-fmcomms6-ebz
AD9652 ADF4351 ADL5380 ADL5566 AD9517 ADCLK925 ADP2370 ADM7150 ADP1740
AD9265-FMC Reference Design: Analog Devices

The AD9265-FMC board is based on the AD9265, which is a 16-Bit, 125 MSPS analog-to-digital converter (ADC) featuring a wide bandwidth differential sample-and-hold analog input amplifier supporting a variety of user-selectable input ranges.
AD9265 AD9517-4
AD-FMCJESDADC1-EBZ Reference Design: Analog Devices

The AD-FMCJESDADC1-EBZ board features two AD9250, which is a 14-Bit, 250MSPS analog-to-digital converter (ADC). This board shares the 4DSP FMC-176 PCB, which in addition to the ADC, has two AD9129, which is a 14-Bit, 2.8GSPS digital-to-analog converter (DAC).
AD9250 AD9129 AD9517-1
AD9434-FMC cf_ad9434_board.jpg Reference Design: Analog Devices

The AD9434-FMC board is based on the AD9434, which is a 12-Bit monolithic sampling analog-to-digital converter (ADC) optimized for high performance, low power, and ease of use. The part operates at up to a 500 MSPS conversion rate and is optimized for outstanding dynamic performance in wideband carrier and broadband systems.
AD9434 AD9517-4
AD9671-FMC Reference Design: Analog Devices

The AD9671-FMC board is based on the AD9671, a low cost, low power, small size and easy to use device for medical ultrasound. It features eight channels, each with a variable gain amplifier (VGA), low noise preamplifier (LNA), CW harmonic rejection I/Q demodulator with programmable phase rotation, anti-aliasing filter (AAF), analog-to-digital converter (ADC) and digital demodulator and decimator for data processing and bandwidth reduction.
AD9671 AD9516
AD-FMCMOTCON1 mc_system.jpg Reference Design: Analog Devices

The AD-FMCMOTCON1-EBZ is a complete high performance servo system on an FPGA Mezzanine Card (FMC) board. Information on the FMC board, and how to use it, the design package that surrounds it, and the software which can make it work, can be found by clicking the documentation link. The purpose of the AD-FMCMOTCON1-EBZ is to provide a complete motor drive system demonstrating efficient and high dynamic control of three phase PMSM and induction motors. The kit consists of two boards: a controller board and a drive board. The system incorporates high quality power sources; reliable power, control, and feedback signals isolation; accurate measurement of motor current & voltage signals; high speed interfaces for control signals to allow fast controller response; industrial Ethernet high speed interfaces; flexible control with a FPGA/SoC interface.
AD7401 AD8207 AD8251 ADA4084-2 AD8646 AD2S1210 ADUM5000 ADP1614 ADP1621 ADP2301 ADP7102 ADM660 ADUM7640 ADUM5230 ADG3308 ADG704 ADG759
23 Sep 2011 21:05 · Robin Getz

FMC

Part Number / Purchase Description ADI Parts
FMC-IMAGEON Reference Design: Analog Devices

1080p, 148.5MHz HDMI 1.4 input/output FMC card
ADV7511
ADV7611
AES-FMC-INDIO-G Documentation: Avnet

The Analog Devices FMC Industrial I/O Daughterboard provides a complete Industrial analog hardware development environment for designers to accelerate their time to market. The daughterboard delivers a stable platform to develop and test industrial analog designs, digitally interfaced to the advanced Xilinx FPGA family. The variety of Analog Devices Industrial Hardware, tied to a separately purchased Spartan-6 LX150T board / device through an LPC FMC connector offers a prototyping environment to effectively demonstrate the enhanced benefits of Analog Industrial IO coupled with advanced Xilinx FPGA solutions.
ADuM5402 AD421 TMP05 ADM3490 AD7793 ADG1404 AD8021 AD7612 ADR441 AD5724 ADG1409 ADA4898-1 AD8512A AD8253 ADP1864
23 Sep 2011 20:06 · Robin Getz

Pmods

ADI products can be found on many boards which use industry standard connectors, such as Pmods and FMC.

Pmods are small I/O interface boards that offer an ideal way to extend the capabilities of FPGA/CPLD boards. Pmods communicate with system boards using 6 or 12-pin connectors. Pmods include sensors, I/O, data acquisition & conversion, connectors, and more. Popular systems with Pmod connectors can be found at Digilent or Avnet.

Part Number / Purchase Description ADI Parts
PmodACL Digilent Avnet Silica tile_pmodacl_150.jpg Reference Design: Analog Devices
Reference Design: Digilent
Reference Design: Avnet
Reference Design: Silica

The Digilent PmodACL is a 3-axis digital accelerometer module powered by the Analog Devices ADXL345. It uses a standard 12-pin Pmod connector and can communicate via SPI or I2C.
ADXL345
PmodACL2 pmodacl2icon.jpg Reference Design: Analog Devices

The Digilent Pmod-ACL2 is an ultralow power, 3-axis MEMS accelerometer that consumes less than 2 µA at a 100 Hz output data rate and 270 nA when in motion triggered wake-up mode. Unlike accelerometers that use power duty cycling to achieve low power consumption, the ADXL362 does not alias input signals by undersampling; it samples the full bandwidth of the sensor at all data rates. The ADXL362 always provides 12-bit output resolution; 8-bit formatted data is also provided for more efficient single-byte transfers when a lower resolution is sufficient. Measurement ranges of ±2 g, ±4 g, and ±8 g are available, with a resolution of 1 mg/LSB on the ±2 g range.
ADXL362
PmodAD1 Digilent Avnet Silica tile_pmodad1_150.jpg Reference Design: Analog Devices
Reference Design: Digilent
Reference Design: Avnet
Reference Design: Silica

The Digilent Analog to Digital Module Converter Board (the AD1) converts signals at a maximum sampling rate of one million samples per second, fast enough for the most demanding audio applications. The AD1 uses a 6-pin header connector, and at less than one square inch is small enough to be located at the signal source.
AD7476
PmodAD2 Digilent tile_pmodad2_150.jpg Reference Design: Analog Devices
Reference Design: Digilent

The Digilent PmodAD2 is an analog to digital converter module with up to 4 channels at 12-bit resolution powered by the Analog Devices AD7991. It uses an 8-pin connector that allows communication via I2C. The PmodAD2 also has a 6-pin connector that allows up to 4 analog inputs or up to 3 analog inputs and a voltage reference.
AD7991
PmodAD3 pmodad3_icon.jpg Reference Design: Analog Devices

The Digilent Pmod-AD3 is a complete low power front-end solution for bridge sensor products, including weigh scales, strain gages, and pressure sensors. It contains a precision, low power, 24-bit sigma-delta (S-?) ADC; an on-chip, low noise programmable gain amplifier (PGA); and an on-chip oscillator.
AD7780
PmodAD4 pmodad4icon.jpg Reference Design: Analog Devices

The Digilent Pmod-AD4 is a 16-bit, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD.It contains a low power, high speed, 16-bit sampling ADC and a versatile serial interface port. On the CNV rising edge, it samples an analog input IN+ between 0V to REF with respect to ground sense IN-. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD. Its power scales linearely with throughput.
AD7980
PmodAD5 pmodad5icon.jpg Reference Design: Analog Devices

The Digilent Pmod-AD5 is powered by the Analog Devices AD7193, a low noise, complete analog front end for high precision measurement applications. It contains a low noise, 24-bit sigma-delta (S-?) analog-to-digital converter (ADC).
AD7193
PmodAD6 pmodad6icon.jpg Reference Design: Analog Devices

The Digilent Pmod-AD6 is powered by the Analog Devices AD7091R, a a 12-bit successive approximation analog-to-digital converter (ADC) that offers ultralow power consumption (typically 349 µA at 3 V and 1 MSPS) while achieving fast throughput rates (1 MSPS with a 50 MHz SCLK).
AD7091r
PmodAMP3 pmodamp3_icon.jpg Reference Design: Analog Devices

The Digilent Pmod-AMP3 is powered by the Analog Devices SSM2518, a digital input, Class-D power amplifier that com-bines a digital-to-analog converter (DAC) and a sigma-delta (Σ-Δ) Class-D modulator. This unique architecture enables extremely low real-world power consumption from digital audio sources with excellent audio performance. The SSM2518 is ideal for power sensitive applications, such as mobile phones and portable media players, where system noise can corrupt small analog signals such as those sent to an analog input audio amplifier.
SSM2518
PmodCDC1 Digilent pmodcdc1icon.jpg Reference Design: Analog Devices

The Digilent PmodCDC1 delivers a complete signal processing solution for capacitive sensors, featuring an ultralow power converter with fast response time. The AD7156 uses an Analog Devices, Inc., capacitance-to-digital converter (CDC) technology, which combines features important for interfacing to real sensors, such as high input sensitivity and high tolerance of both input parasitic ground capacitance and leakage current. The integrated adaptive threshold algorithm compensates for any variations in the sensor capacitance due to environmental factors like humidity and temperature or due to changes in the dielectric material over time.
AD7156
PmodDA1 Digilent Avnet Silica tile_pmodda1_150.jpg Reference Design: Analog Devices
Reference Design: Digilent
Reference Design: Avnet
Reference Design: Silica

The Digilent PmodDA1 Digital To Analog Module Converter Board (the DA1) converts signals from digital to analog at up to one MSa per second. The DA1 uses a 6-pin header connector and at less than one square inch is small enough to be located where the signal is needed. The DA1 has four simultaneous D/A conversion channels, each with an 8-bit converter that can process a separate digital signal. It is possible to send a single signal, such as a reset signal, to all four channels simultaneously, but multiple unique signals cannot be sent simultaneously.
AD7303
PmodDA3 pmodda3icon.jpg Reference Design: Analog Devices

The Digilent Pmod-DA3 is a single, 16-bit, serial input, unbuffered voltage output digital-to-analog converter (DAC) that operates from a single 2.7V to 5.5V supply. The DAC output range extends from 0V to Vref and is guaranteed monotonic, providing +- 1 LSB INL accuracy at 16 bits without adjustment.
AD5541A
PmodDA4 pmodda4icon.jpg Reference Design: Analog Devices

The Digilent Pmod-DA4 is a low power, octal, 12 bit, buffered voltage-output DAC. The device operates from a single 2.7 V to 5.5 V supply and is guaranteed monotonic by design. The AD5628 is available in both a 4 mm × 4 mm LFCSP and a 16-lead TSSOP. The AD5628 has an on-chip reference with an internal gain of 2. The AD5628 has a 1.25 V 5 ppm/°C reference, giving a full-scale output range of 2.5 V; the AD5628-2 has a 2.5 V 5 ppm/°C reference, giving a full-scale output range of 5 V.
AD5628
PmodDA5 ASCII Reference Design: Analog Devices

The Digilent Pmod-DA5 is a single 18-bit, unbuffered voltage output DAC that operates from a bipolar supply of up to 33 V. The AD5781 accepts a positive reference input range of 5 V to VDD − 2.5 V and a negative reference input range of VSS + 2.5 V to 0 V. The AD5781 offers a relative accuracy specification of ±0.5 LSB maximum, and operation is guaranteed monotonic with a ±0.5 LSB DNL maximum specification.
AD5781
PmodDPOT pmoddpoticon.jpg Reference Design: Analog Devices

The Digilent Pmod-DPOT is powered by the Analog Devices AD5160, a 256 Position SPI Compatible Digital Potentiometer
AD5160
PmodGYRO2 Digilent tile_pmodgyro2_150.jpg Reference Design: Analog Devices

The Digilent PmodGYRO2 is powered by the Analog Devices ADXRS453, an angular rate sensor (gyroscope) intended for industrial, instrumentation and stabilization applications in high vibration environments.
ADXRS453
PmodIA pmod_ia.jpg Reference Design: Analog Devices

The Digilent PmodIA is powered by the Analog Devices AD5933, a high precision impedance converter system solution that combines an on-board frequency generator with a 12-bit, 1 MSPS, analog-to-digital converter (ADC).
AD5933
PmodIOXP Digilent tile_pmodioxp_150.jpg Reference Design: Analog Devices

The Digilent PmodIOXP is an I/O expansion module powered by the Analog Devices ADP5589. It functions as an I/O port expander and keypad matrix decoder, and uses a standard 8-pin I2C connector allowing it to communicate with a system board via I2C.
ADP5589
PmodMIC2 Digilent pmodmic2icon.jpg Reference Design: Analog Devices

The Digilent PmodMIC2 is powered by the Analog Devices ADMP441, a high performance, low power, digital output, omnidirectional MEMS microphone with a bottom port. The complete ADMP441 solution consists of a MEMS sensor, signal conditioning, an analog-to-digital converter, antialiasing filters, power management, and an industry standard 24-bit I²S interfface.
ADMP441
PmodRS232 Digilent tile_pmodrs232_150.jpg The PmodRS232 Converter Module Board (the RS232 module) translates voltage from the logic levels used by Digilent system boards to the RS232 voltage used for serial communications. ADM3232E
PmodTMP2 Digilent tile_pmodtmp2_150.jpg Reference Design: Analog Devices

The Digilent PmodTMP2 is a high accuracy digital temperature sensor offering breakthrough performance over a wide industrial range, housed in a 4 mm × 4 mm LFCSP package. It contains an internal band gap reference, a temperature sensor, and a 16-bit ADC to monitor and digitize the temperature to 0.0078°C resolution. The ADC resolution, by default, is set to 13 bits (0.0625°C). The ADC resolution is a user programmable mode that can be changed through the serial interface.
ADT7420
23 Sep 2011 21:05 · Robin Getz

Pmod Compatible Boards

CftL Reference Designs

Part Number / Purchase Description ADI Parts
EVAL-CN0179-PMDZ
CN0179 is a 4 mA-to-20 mA current loop transmitter for communication between a process control system and its actuator. Current loop interfaces are usually preferred because they offer the most cost effective approach to long distance noise immune data transmission. Besides being cost effective, this circuit offers the industry’s lowest power solution.
AD5641
AD8657
ADR02
EVAL-CN0216-PMDZ

CN0216 is a precision weigh scale signal conditioning system. Ultralow noise, low offset voltage, and low drift amplifiers are used at the front end for amplification of the low-level signal from the load cell.
AD7791
ADA4528-1
ADP3301
EVAL-CN0326-PMDZ

CN0326 is a completely isolated low power pH sensor signal conditioner and digitizer with automatic temperature compensation for high accuracy. This circuit supports a wide variety of pH sensors that have very high internal resistance that can range from 1 MΩ to several GΩ, and digital signal and power isolation provides immunity to noise and transient voltages often encountered in harsh industrial environments. Suitable for a variety of industrial applications such as chemical, food processing, water, and wastewater analysis.
AD7793
AD8603
ADUM5401
EVAL-CN0332-PMDZ

CN0332 is a single-supply, low cost, high-speed magnetoresistive (MR) signal conditioner solution that amplifies the small output voltage of the magnetoresistive sensor and converts it into a digital output signal. The circuit provides a compact and cost effective robust solution for high speed rotational sensing in industrial and automotive applications and is an excellent alternative to Hall effect sensors.
ADCMP601
AD8027
ADA4897-2
EVAL-CN0335-PMDZ

CN0335 processes ±10 V input signals using a single 3.3 V supply. The total error after room temperature calibration is less than ±0.1% FSR over a ±10°C temperature change, making it ideal for a wide variety of industrial measurements. Both data and power are isolated, thereby making the circuit robust to high voltages and also ground-loop interference often encountered in harsh industrial environments.
AD7091R
AD8606
ADUM5401
EVAL-CN0336-PMDZ

CN0336 processes 4 mA to 20 mA input signals using a single 3.3 V supply. The total error after room temperature calibration is ±0.06% FSR over a ±10°C temperature change, making it ideal for a wide variety of industrial measurements. Both data and power are isolated, thereby making the circuit robust to high voltages and also ground-loop interference often encountered in harsh industrial environments.
AD7091R
AD8606
ADUM5401
EVAL-CN0337-PMDZ

CN0337 processes the output of a PT100 RTD and includes an innovative circuit for lead-wire compensation using a standard 3-wire connection. The circuit operates on a single 3.3 V supply.
AD7091R
AD8606
ADUM5401
EVAL-CN0346-PMDZ

CN0346 is a relative humidity sensing circuit which can be connected up to any Pmod compatible host controller board.
AD7156
AD8615
ADP125
EVAL-CN0349-PMDZ

CN0349 is a fully Isolated conductivity measurement data acquisition system.
AD5934
AD8606
ADUM5000
ADUM1250
ADG715
EVAL-CN0350-PMDZ

CN0350 processes charge input signals from piezoelectric sensors using a single 3.3 V supply and has a total error of less than 0.25% FSR after calibration over a ±10°C temperature range.
AD7091R
AD8608
EVAL-CN0354-PMDZ

CN0354 is a low power multichannel thermocouple measurement system with cold junction compensation.
AD7787
AD8495
ADM8829
ADG1609
ADR3412
REF194
EVAL-CN0355-PMDZ

CN0355 is a low power multichannel thermocouple measurement system with cold junction compensation.
AD7793
AD8420
ADA4096-2
EVAL-CN0357-PMDZ

CN0357 is an electrochemical gas sensing signal conditioning solution, designed to work with many electrochemical gas sensors down to resolutions of 1 part per million (ppm).
AD7790
ADA4528-2
AD8500
ADR3412
AD5270

ADC Drivers

Resolution Sampling Speed Part Number / Purchase Description ADI Parts Device Driver
14-Bits 250 KSPS EVAL-AD7942-PMDZ

AD7942 is a 14-bit PulSAR® ADC 250 kSPS, unipolar, single-ended input.
AD7942
ADA4841
AD7942 IIO Serial ADC Linux Driver
14-Bits 500 KSPS EVAL-AD7946-PMDZ

AD7946 is a 14-bit PulSAR® ADC 500 kSPS, unipolar, single-ended input.
AD7946
ADA4841
AD7946 IIO Serial ADC Linux Driver
16-Bits 100 KSPS EVAL-AD7988-1-PMDZ

AD7988-1 is a 16-bit PulSAR® ADC 100 kSPS, unipolar, differential input.
AD7988-1
ADA4841
AD7988-1 IIO Serial ADC Linux Driver
16-Bits 250 KSPS EVAL-AD7685-PMDZ

AD7685 is a 16-bit PulSAR® ADC 250 kSPS, unipolar, single-ended input.
AD7685
ADA4841
AD7685 IIO Serial ADC Linux Driver
16-Bits 250 KSPS EVAL-AD7687-PMDZ

AD7687 is a 16-bit PulSAR® ADC 250 kSPS, unipolar, differential input.
AD7687
ADA4841
AD7687 IIO Serial ADC Linux Driver
16-Bits 250 KSPS EVAL-AD7691-PMDZ

AD7691 is a 16-bit PulSAR® ADC 250 kSPS, unipolar, differential input.
AD7691
ADA4841
AD7691 IIO Serial ADC Linux Driver
16-Bits 500 KSPS EVAL-AD7686-PMDZ

AD7686 is a 16-bit PulSAR® ADC 500 kSPS, unipolar, single-ended input.
AD7686
ADA4841
AD7686 IIO Serial ADC Linux Driver
16-Bits 500 KSPS EVAL-AD7688-PMDZ

AD7688 is a 16-bit PulSAR® ADC 500 kSPS, unipolar, differential input.
AD7688
ADA4841
AD7688 IIO Serial ADC Linux Driver
16-Bits 500 KSPS EVAL-AD7693-PMDZ

AD7693 is a 16-bit PulSAR® ADC 500 kSPS, unipolar, differential input.
AD7693
ADA4841
AD7693 IIO Serial ADC Linux Driver
16-Bits 500 KSPS EVAL-AD7988-5-PMDZ

AD7988-5 is a 16-bit PulSAR® ADC 500 kSPS, unipolar, single-ended input.
AD7988-5
ADA4841
AD7988-5 IIO Serial ADC Linux Driver
16-Bits 1000 KSPS EVAL-AD7980-PMDZ

AD7980 is a 16-bit PulSAR® ADC 1000 kSPS, unipolar, single-ended input.
AD7980
ADA4841
AD7980 IIO Serial ADC Linux Driver
16-Bits 1333 KSPS EVAL-AD7983-PMDZ

AD7983 is a 16-bit PulSAR® ADC 1333 kSPS, unipolar, single-ended input.
AD7983
ADA4841
AD7983 IIO Serial ADC Linux Driver
18-Bits 400 KSPS EVAL-AD7690-PMDZ

AD7690 is a 18-bit PulSAR® ADC 400 kSPS, unipolar, differential input.
AD7690
ADA4841
AD7690 IIO Serial ADC Linux Driver
18-Bits 1000 KSPS EVAL-AD7982-PMDZ

AD7982 is a 18-bit PulSAR® ADC 1000 kSPS, unipolar, differential input.
AD7982
ADA4841
AD7982 IIO Serial ADC Linux Driver
18-Bits 1333 KSPS EVAL-AD7984-PMDZ

AD7984 is a 18-bit PulSAR® ADC 1333 kSPS, unipolar, differential input.
AD7984
ADA4841
AD7984 IIO Serial ADC Linux Driver

Adapter Boards

An Adapter Board is an electrical interface routing between one socket or connection to another. The purpose of these adapters are to reroute one connector (normally an ADI standard connector) to a different connector (normally a standard Xilinx connector).

AD-DAC-FMC Adapter Board

ad-dac-fmc-adp_sm.jpg
The AD-DAC-FMC adapter board allows any of Analog Devices' DPG2-compatiable High-Speed DAC Evaluation Boards to be used on a Xilinx® evaluation board with a FMC connector. The adapter board uses the Low Pin Count (LPC) version of the FMC connector, so it can be used on either LPC or HPC hosts.

More information about this adapter board can be found at the product page.

Existing projects which can be used with the AD-DAC-FMC Adapter Board.

Part Number Description ADI Parts
AD9739-R2-EBZ Reference design: Analog Devices

14-Bit, 2500 MSPS, RF Digital-to-Analog Converter
AD9739
AD9789-EBZ Reference design: Analog Devices

4 Channel QAM encoder/interpolator/upconverter with 2400 MSPS, 14-bit RF digital-to-analog converter
AD9789
AD9122-EBZ Reference design: Analog Devices

Dual 16-bit, 1200MSPS digital-to-analog converter
AD9122
AD9129-EBZ Reference design: Analog Devices

14-bit, 2.8GSPS digital-to-analog converter
AD9129
AD9747-EBZ Reference design: Analog Devices

Dual 16-bit, 250MSPS digital-to-analog converter
AD9747
AD9117-DPG2-EBZ
AD9116-DPG2-EBZ
AD9115-DPG2-EBZ
AD9114-DPG2-EBZ
Reference design: Analog Devices

8/10/12/14-bit, low power digital-to-analog converter (DAC) that provides a sample rate of 125 MSPS.
AD9114
AD9115
AD9116
AD9117
AD9785-DPG2-EBZ
AD9787-DPG2-EBZ
AD9788-DPG2-EBZ
Reference design: Analog Devices

12-bit, 14-bit, and 16-bit, high dynamic range TxDAC® devices, respectively, that provide a sample rate of 800 MSPS, permitting multicarrier generation up to the Nyquist frequency.
AD9785
AD9787
AD9788

AD-ADC-FMC Adapter Board


The AD-ADC-FMC adapter board allows Analog Devices' FIFO-compatible High-Speed ADC Evaluation Boards to be used on a Xilinx® evaluation board with a FMC connector. There are two revisions of the interposer where both use the high pin count (HPC) version of the FMC connector.

More information about this adapter board can be found at the product page.

Evaluation boards which can be used with the Rev A, AD-ADC-FMC Adapter Board:

Part Number Description ADI Parts
AD9279-80KITZ Reference Design: Analog Devices

8 channel LNA, VGA, AAF, I/Q Demodulator with 12Bit, 80MSPS Analog-to-Digital Converter
AD9279
AD9467-250EBZ Reference Design: Analog Devices

16-bit, 250MSPS monolithic, IF sampling analog-to-digital converter (ADC)
AD9467

Evaluation boards which can be used with the Rev B, AD-ADC-FMC Adapter Board (Part Number: CVT-ADC-FMC-INTPZB):

Part Number Description ADI Parts
AD9250-250EBZ Reference Design: Analog Devices

14-Bit, 250 MSPS, Analog-to-Digital Converter
AD9250
AD9250-170EBZ Reference Design: Analog Devices

14 Bit, 170 MSPS, Analog-to-Digital converter
AD9250
AD6673-250EBZ Reference Design: Analog Devices

11 Bit, 250 MSPS, Dual channel IF Receiver
AD6673
AD9649-EBZ Reference Design: Analog Devices

14 Bit, 80 MSPS, Single channel ADC
AD9649
AD9671-EBZ Reference Design: Analog Devices

14 Bit, 40 MSPS, Eight channel Ultrasound AFE with digital demodulator
AD9671
AD9683-250EBZ Reference Design: Analog Devices

14-Bit, 250 MSPS, Analog-to-Digital Converter
AD9683

FMC-SDP Interposer

The FMC-SDP interposer allows any Analog Devices SDP Evaluation Board to be used on a Xilinx® evaluation board with a FMC connector. The interposer uses the Low Pin Count (LPC) version of the FMC connector, so it can be used on either LPC or HPC hosts. The interposer can only be used with FPGA boards that support 3.3VIO for the FMC connection.

Part Number Description ADI Parts
SDP-FMC-IB1Z SDP to FMC Interposer Board

Existing projects which can be used with the FMC-SDP Adapter Board.

Part Number Description ADI Parts
Analog to Digital Converters
EVAL-AD7091SDZ ad7091_kc705.jpg Reference Design: Analog Devices

The AD7091 is a 12-bit successive approximation register analog-to-digital converter (SAR ADC) that offers ultralow power consumption (typically 367 μA at 3 V and 1 MSPS) while achieving fast throughput rates (1 MSPS with a 50 MHz SCLK). The AD7091 operates from a single 2.09 V to 5.25 V power supply. The AD7091 also features an on-chip conversion clock and a high speed serial interface.
AD7091
EVAL-AD7091RSDZ ad7091r_kc705.jpg Reference Design: Analog Devices

The AD7091R is a 12-bit successive approximation analog-to-digital converter (ADC) that offers ultralow power consumption (typically 349 µA at 3 V and 1 MSPS) while achieving fast throughput rates (1 MSPS with a 50 MHz SCLK). Operating from a single 2.7 V to 5.25 V power supply, the part contains a wide bandwidth track-and-hold amplifier that can handle input frequencies in excess of 7 MHz. The AD7091R also features an on-chip conversion clock, accurate reference, and high speed serial interface.
AD7091R
EVAL-AD7175-2SDZ ASCII Reference Design: Analog Devices

The AD7175-2 is a low noise, fast settling, multiplexed, 2-/4- channel (fully/pseudo differential) Σ-Δ analog-to-digital converter (ADC) for low bandwidth inputs. It has a maximum channel scan rate of 50 kSPS (20 μs) for fully settled data. The output data rates range from 5 SPS to 250 kSPS. The AD7175-2 integrates key analog and digital signal condition-ing blocks to allow users to configure an individual setup for each analog input channel in use. Each feature can be user selected on a per channel basis. Integrated true rail-to-rail buffers on the analog inputs and external reference inputs provide easy to drive high impedance inputs. The precision 2.5 V low drift (2 ppm/°C) band gap internal reference (with output reference buffer) adds embedded functionality to reduce external component count. The digital filter allows simultaneous 50 Hz/60 Hz rejection at 27.27 SPS output data rate. The user can switch between different filter options according to the demands of each channel in the application. The ADC automatically switches through each selected channel. Further digital processing functions include offset and gain calibration registers, configurable on a per channel basis.
AD7175-2
EVAL-AD7176-2SDZ ASCII Reference Design: Analog Devices

The AD7176-2 is a fast settling, highly accurate, high resolution, multiplexed S-? analog-to-digital converter (ADC) for low band-width input signals. Its inputs can be configured as two fully differential or four pseudo differential inputs via the integrated crosspoint multiplexer. An integrated precision, 2.5 V, low drift (2 ppm/°C), band gap internal reference (with an output reference buffer) adds functionality and reduces the external component count. The maximum channel scan data rate is 50 kSPS (with a settling time of 20 µs), resulting in fully settled data of 17 noise free bits. User-selectable output data rates range from 5 SPS to 250 kSPS. The resolution increases at lower speeds. The AD7176-2 offers three key digital filters. The fast settling filter maximizes the channel scan rate. The Sinc3 filter maximizes the resolution for single-channel, low speed applications. For 50 Hz and 60 Hz environments, the AD7176-2 specific filter minimizes the settling times or maximizes the rejection of the line frequency. These enhanced filters enable simultaneous 50 Hz and 60 Hz rejec-tion with a 27 SPS output data rate (with a settling time of 36 ms).
AD7176-2
EVAL-AD7291SDZ ad7291.jpg Reference Design: Analog Devices

The AD7291 is a 12-bit, low power, 8-channel, successive approximation analog-to-digital converter (ADC) with an internal temperature sensor.
AD7291
EVAL-AD7298SDZ img_ad7298.jpg Reference Design: Analog Devices

The AD7298 is a 12-bit, high speed, low power, 8-channel, successive approximation ADC with an internal temperature sensor. The part operates from a single 3.3 V power supply and features throughput rates up to 1 MSPS. The device contains a low noise, wide bandwidth track-and-hold amplifier that can handle input frequencies in excess of 30 MHz.
AD7298
EVAL-AD7327SDZ UNICODE��C�R�E�A�T�O�R�:� �g�d�-�j�p�e�g� �v�1�.�0� �(�u�s�i�n�g� �I�J�G�... Reference Design: Analog Devices

The AD7327 is an 8-channel, 12-bit plus sign successive approximation ADC designed on the iCMOS (industrial CMOS) process. iCMOS is a process combining high voltage silicon with submicron CMOS and complementary bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts could achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can accept bipolar input signals while providing increased performance, dramatically reduced power consumption, and reduced package size. The AD7327 can accept true bipolar analog input signals. The AD7327 has four software-selectable input ranges: ±10 V, ±5 V, ±2.5 V, and 0 V to +10 V. Each analog input channel can be independently programmed to one of the four input ranges. The analog input channels on the AD7327 can be programmed to be single-ended, true differential, or pseudo differential.
AD7327
EVAL-AD7328SDZ UNICODE��C�R�E�A�T�O�R�:� �g�d�-�j�p�e�g� �v�1�.�0� �(�u�s�i�n�g� �I�J�G�... Reference Design: Analog Devices

The AD7328 is an 8-channel, 12-bit plus sign successive approximation ADC designed on the iCMOS™ (industrial CMOS) process. iCMOS is a process combining high voltage silicon with submicron CMOS and complementary bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts could achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can accept bipolar input signals while providing increased performance, dramatically reduced power consumption, and reduced package size. The AD7328 can accept true bipolar analog input signals.
AD7328
EVAL-AD7366SDZ ad7366.jpg Reference Design: Analog Devices

The AD7366 is a dual 12-bit, high speed, low power, successive approximation analog-to-digital converter that feature throughput rates up to 1 MSPS. The device contains two ADCs, each preceded by a 2-channel multiplexer, and a low noise, wide bandwidth track-and-hold amplifier. The AD7366 is fabricated on the Analog Devices, Inc., industrial CMOS process (iCMOS), which is a technology platform combining the advantages of low and high voltage CMOS. The iCMOS process allows the AD7366 to accept high voltage bipolar signals in addition to reducing power consumption and package size. The AD7366 can accept true bipolar analog input signals in the ±10 V range, ±5 V range, and 0 V to 10 V range.
AD7366
EVAL-AD7367SDZ ad7367.jpg Reference Design: Analog Devices

The AD7367 is a dual 14-bit, high speed, low power, successive approximation analog-to-digital converter that feature throughput rates up to 1 MSPS. The device contains two ADCs, each preceded by a 2-channel multiplexer, and a low noise, wide bandwidth track-and-hold amplifier. The AD7367 is fabricated on the Analog Devices, Inc., industrial CMOS process (iCMOS), which is a technology platform combining the advantages of low and high voltage CMOS. The iCMOS process allows the AD7367 to accept high voltage bipolar signals in addition to reducing power consumption and package size. The AD7367 can accept true bipolar analog input signals in the ±10 V range, ±5 V range, and 0 V to 10 V range.
AD7367
EVAL-AD7450ASDZ ad7450a.jpg Reference Design: Analog Devices

The AD7450A is 12-bit, high speed, low power, successive-approximation (SAR) analog-to-digital converter that feature a fully differential analog input. This part operates from a single 3 V or 5 V power supply and features throughput rates up to 1 MSPS.
AD7450A
EVAL-AD7490SDZ ad7490.jpg Reference Design: Analog Devices

The AD7490 is a 12-bit high speed, low power, successive- approximation ADC. The part operates from a single 2.7 V to 5.25 V power supply and features throughput rates up to 1 MSPS. The part contains a low-noise, wide bandwidth track/hold amplifier that can handle input frequencies in excess of 1 MHz.
AD7490
EVAL-AD7656-1SDZ ad7656-1.jpg Reference Design: Analog Devices

The AD7656 is a reduced decoupling pin- and software-compatible versions of AD7656/AD7657/AD7658. The AD7656-1/AD7657-1/AD7658-1 devices contain six 16-/ 14-/12-bit, fast, low power successive approximation ADCs in a package designed on the iCMOS® process (industrial CMOS). iCMOS is a process combining high voltage silicon with submicron CMOS and complementary bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts could achieve. Unlike analog ICs using conven-tional CMOS processes, iCMOS components can accept bipolar input signals while providing increased performance, which dramatically reduces power consumption and package size. The AD7656-1/AD7657-1/AD7658-1 feature throughput rates of up to 250 kSPS.
AD7656-1
EVAL-AD7657-1SDZ ad7656-1.jpg Reference Design: Analog Devices

The AD7657 is a reduced decoupling pin- and software-compatible versions of AD7656/AD7657/AD7658. The AD7656-1/AD7657-1/AD7658-1 devices contain six 16-/ 14-/12-bit, fast, low power successive approximation ADCs in a package designed on the iCMOS® process (industrial CMOS). iCMOS is a process combining high voltage silicon with submicron CMOS and complementary bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts could achieve. Unlike analog ICs using conven-tional CMOS processes, iCMOS components can accept bipolar input signals while providing increased performance, which dramatically reduces power consumption and package size. The AD7656-1/AD7657-1/AD7658-1 feature throughput rates of up to 250 kSPS.
AD7657-1
EVAL-AD7658-1SDZ ad7656-1.jpg Reference Design: Analog Devices

The AD7658 is a reduced decoupling pin- and software-compatible versions of AD7656/AD7657/AD7658. The AD7656-1/AD7657-1/AD7658-1 devices contain six 16-/ 14-/12-bit, fast, low power successive approximation ADCs in a package designed on the iCMOS® process (industrial CMOS). iCMOS is a process combining high voltage silicon with submicron CMOS and complementary bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts could achieve. Unlike analog ICs using conven-tional CMOS processes, iCMOS components can accept bipolar input signals while providing increased performance, which dramatically reduces power consumption and package size. The AD7656-1/AD7657-1/AD7658-1 feature throughput rates of up to 250 kSPS.
AD7658-1
EVAL-AD7492SDZ ad7492.jpg Reference Design: Analog Devices
The AD7492, AD7492-4, AD7492-5 are 12-bit high speed, low power, successive approximation ADCs. The parts operate from a single 2.7 V to 5.25 V power supply and feature throughput rates up to 1.25 MSPS. They contain a low noise, wide bandwidth track/hold amplifier that can handle bandwidths up to 10 MHz.
AD7492
EVAL-AD7683SDZ ad7980.jpg Reference Design: Analog Devices

The AD7683 is a 16-bit, charge redistribution, successive approximation, PulSAR® analog-to-digital converter (ADC) that operates from a single power supply, VDD, between 2.7 V and 5.5 V. It contains a low power, high speed, 16-bit sampling ADC with no missing codes (B grade), an internal conversion clock, and a serial, SPI-compatible interface port. The part also contains a low noise, wide bandwidth, short aperture delay, track-and-hold circuit. On the CS falling edge, it samples an analog input, +IN, between 0 V to REF with respect to a ground sense, –IN. The reference voltage, REF, is applied externally and can be set up to the supply voltage. Its power scales linearly with throughput.
AD7683
EVAL-AD7685SDZ ad7980.jpg Reference Design: Analog Devices

The AD7685 is a 16-bit, charge redistribution successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD, between 2.3 V to 5.5 V. It contains a low power, high speed, 16-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. The part also contains a low noise, wide bandwidth, short aperture delay, track-and-hold circuit. On the CNV rising edge, it samples an analog input IN+ between 0 V to REF with respect to a ground sense IN-. The reference voltage, REF, is applied externally and can be set up to the supply voltage. Power dissipation scales linearly with throughput.
AD7685
EVAL-AD7686SDZ ad7980.jpg Reference Design: Analog Devices

The D7686 is a 16-bit, charge redistribution, successive approximation, analog-to-digital converter (ADC) that operates from a single 5 V power supply, VDD. It contains a low power, high speed, 16-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. The part also contains a low noise, wide bandwidth, short aperture delay track-and-hold circuit. On the CNV rising edge, the AD7686 samples an analog input IN+ between 0 V to REF with respect to a ground sense IN-. The reference voltage, REF, is applied externally and can be set up to the supply voltage. Power dissipation scales linearly with throughput.
AD7686
EVAL-AD7687SDZ ad7980.jpg Reference Design: Analog Devices

The AD7687 is a 16-bit, charge redistribution, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD, between 2.3 V to 5.5 V. It contains a low power, high speed, 16-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. The part also contains a low noise, wide bandwidth, short aperture delay track-and-hold circuit. On the CNV rising edge, it samples the voltage difference between IN+ and IN- pins. The voltages on these pins usually swing in opposite phase between 0 V to REF. The reference voltage, REF, is applied externally and can be set up to the supply voltage. Its power scales linearly with throughput.
AD7687
EVAL-AD7688SDZ ad7980.jpg Reference Design: Analog Devices

The AD688 is a 16-bit, charge redistribution, successive approximation, analog-to-digital converter (ADC) that operates from a single 5 V power supply, VDD. It contains a low power, high speed, 16-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. The part also contains a low noise, wide bandwidth, short aperture delay track-and-hold circuit. On the CNV rising edge, it samples the voltage difference between IN+ and IN- pins. The voltages on these pins usually swing in opposite phase between 0 V and REF. The reference voltage, REF, is applied externally and can be set up to the supply voltage. Its power scales linearly with throughput.
AD7688
EVAL-AD7690SDZ ad7980.jpg Reference Design: Analog Devices

The AD7690 is an 18-bit, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD. It contains a low power, high speed, 18-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. On the CNV rising edge, it samples the voltage difference between the IN+ and IN- pins. The voltages on these pins swing in opposite phase between 0 V and REF. The reference voltage, REF, is applied externally and can be set up to the supply voltage. The power of the AD7690 scales linearly with the throughput.
AD7690
EVAL-AD7691SDZ ad7980.jpg Reference Design: Analog Devices

The AD7691 is an 18-bit, charge redistribution, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD, between 2.3 V and 5 V. It contains a low power, high speed, 18-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. On the CNV rising edge, it samples the voltage difference between the IN+ and IN- pins. The voltages on these pins swing in opposite phases between 0 V and REF. The reference voltage, REF, is applied externally and can be set up to the supply voltage. The power of the AD7691 scales linearly with the throughput.
AD7691
EVAL-AD7693SDZ ad7980.jpg Reference Design: Analog Devices

The AD7693 is a 16-bit, successive approximation analog-to-digital converter (ADC) that operates from a single power supply, VDD. It contains a low power, high speed, 16-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. The reference voltage, VREF, is applied externally and can be set up to the supply voltage, VDD. On the CNV rising edge, it samples the voltage difference between the IN+ and IN- pins. The voltages on these pins swing in opposite phase between 0 V and VREF about VREF/2. Its power scales linearly with throughput.
AD7693
EVAL-AD7942SDZ ad7980.jpg Reference Design: Analog Devices

The AD7942 is a 14-bit, charge redistribution, successive approxi-mation PulSAR® ADC that operates from a single power supply, VDD, between 2.3 V to 5.5 V. It contains a low power, high speed, 14-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. The part also contains a low noise, wide bandwidth, short aperture delay track-and-hold circuit. On the CNV rising edge, it samples an analog input, IN+, between 0 V to VREF with respect to a ground sense, IN-. The reference voltage, VREF, is applied externally and is set up to be the supply voltage. Its power scales linearly with the throughput.
AD7942
EVAL-AD7946SDZ ad7980.jpg Reference Design: Analog Devices

The AD7946 is a 14-bit, charge redistribution, successive approximation, analog-to-digital converter (ADC) that operates from a single 5 V power supply, VDD. It contains a low power, high speed, 14-bit sampling ADC with no missing codes, an internal conversion clock, and a versatile serial interface port. The part also contains a low noise, wide bandwidth, short aperture delay track-and-hold circuit. On the CNV rising edge, it samples an analog input IN+ between 0 V to REF with respect to a ground sense IN-. The reference voltage, REF, is applied externally and can be set up to the supply voltage. Its power scales linearly with throughput.
AD7946
EVAL-AD7980SDZ ad7980.jpg Reference Design: Analog Devices

The AD7980 is a 16-bit, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD. It contains a low power, high speed, 16-bit sampling ADC and a versatile serial interface port. On the CNV rising edge, it samples an analog input IN+ between 0 V to REF with respect to a ground sense IN-. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD. Its power scales linearly with throughput.
AD7980
EVAL-AD7982SDZ ad7982.jpg Reference Design: Analog Devices

The AD7982 is an 18-bit, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD. It contains a low power, high speed, 18-bit sampling ADC and a versatile serial interface port. On the CNV rising edge, the AD7982 samples the voltage difference between the IN+ and IN- pins. The voltages on these pins usually swing in opposite phases between 0 V and VREF. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD. Its power scales linearly with throughput.
AD7982
EVAL-AD7983SDZ ad7983.jpg Reference Design: Analog Devices

The AD7983 is a 16-bit, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD. It contains a low power, high speed, 16-bit sampling ADC and a versatile serial interface port. On the CNV rising edge, it samples an analog input IN+ between 0 V to REF with respect to a ground sense IN-. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD. Its power scales linearly with throughput.
AD7983
EVAL-AD7984SDZ ad7984.jpg Reference Design: Analog Devices

The AD7984 is an 18-bit, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD. It contains a low power, high speed, 18-bit sampling ADC and a versatile serial interface port. On the CNV rising edge, the AD7984 samples the voltage difference between the IN+ and IN- pins. The voltages on these pins usually swing in opposite phases between 0 V and VREF. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD.
AD7984
EVAL-AD7988-5SDZ ad7980.jpg Reference Design: Analog Devices

The AD7988-1 is is a 16-bit, successive approximation, analog-to-digital converter (ADC) that operate from a single power supply, VDD. The AD7988-1 offers a 100kSPS throughput. It is a low power, 16-bit sampling ADC with a versatile serial interface port. On the CNV rising edge, it samples an analog input IN+ between 0 V to REF with respect to a ground sense IN-. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD.
AD7988-1
EVAL-AD7988-5SDZ ad7980.jpg Reference Design: Analog Devices

The AD7988-5 is is a 16-bit, successive approximation, analog-to-digital converter (ADC) that operate from a single power supply, VDD. The AD7988-5 offers a 500kSPS throughput. It is a low power, 16-bit sampling ADC with a versatile serial interface port. On the CNV rising edge, it samples an analog input IN+ between 0 V to REF with respect to a ground sense IN-. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD.
AD7988-5
Digital to Analog Converters
EVAL-AD5415SDZ img_ad5415.jpg Reference Design: Analog Devices

The AD5415 is a CMOS, 12-bit, dual channel, current output digital-to-analog converter. This device operates from a 2.5 V to 5.5 V power supply, making it suited to battery-powered applications and other applications.
AD5415
EVAL-AD5421SDZ img_ad5421.jpg Reference Design: Analog Devices

The AD5421 is a complete, loop-powered, 4 mA to 20 mA digital-to-analog converter (DAC) designed to meet the needs of smart transmitter manufacturers in the industrial control industry. The DAC provides a high precision, fully integrated, low cost solution in a compact TSSOP package.
AD5421
EVAL-AD5425SDZ img_ad5449.jpg Reference Design: Analog Devices

The AD5425 is a CMOS, 8-bit, current output digital-to-analog converter that operates from a 2.5 V to 5.5 V power supply, making it suitable for battery-powered applications and many other applications.
AD5425
EVAL-AD5443SDZ img_ad5443.jpg Reference Design: Analog Devices

The AD5443 is a CMOS12-bit current output digital-to-analog converters (DACs), respectively. These devices operate from a 3 V to 5.5 V power supply, makingthem suitable for battery-powered applications and many other applications.
AD5443
EVAL-AD5446SDZ img_ad5443.jpg Reference Design: Analog Devices

The AD5446 is a CMOS 14-bit current output, digital-to-analog converters (DACs). Operating from a single 2.5 V to 5.5 V power supply, these devices are suited for battery-powered and other applications.
AD5446
EVAL-AD5449SDZ img_ad5449.jpg Reference Design: Analog Devices

The AD5449 is CMOS, 12-bit, dual-channel, current output digital-to-analog converter (DAC). This device operates from a 2.5 V to 5.5 V power supply, making it suited to battery-powered and other applications.
AD5449
EVAL-AD5453SDZ img_ad5443.jpg Reference Design: Analog Devices

The AD5453 is a CMOS 14-bit current output digital-to-analog converters, respectively. These devices operate from a 2.5 V to 5.5 V power supply, making them suited to several applications, including battery- powered applications.
AD5453
EVAL-AD5541ASDZ img_ad5541a.jpg Reference Design: Analog Devices

The AD5541A is a single, 16-bit, serial input, unbuffered voltage output digital-to-analog converter (DAC) that operate from a single 2.7 V to 5.5 V supply.
AD5541A
EVAL-AD5542ASDZ img_ad5542a.jpg Reference Design: Analog Devices

The AD5542A is single, 16-bit, serial input, unbuffered voltage output digital-to-analog converter (DAC) that operates from a single 2.7 V to 5.5 V supply. The DAC output range extends from 0 V to VREF and is guaranteed
AD5542A
EVAL-AD5543SDZ img_ad5543.jpg Reference Design: Analog Devices

The AD5543 is precision 16-bit, low power, current output, small form factor digital-to-analog converter (DAC). It is designed to operate from a single 5 V supply with a ±10 V multiplying reference.
AD5543
EVAL-AD5553SDZ img_ad5553.jpg Reference Design: Analog Devices

The AD5553 is precision 14-bit, low power, current output, small form factor digital-to-analog converter (DAC). It is designed to operate from a single 5 V supply with a ±10 V multiplying reference.
AD5553
EVAL-AD5570SDZ img_ad5570.jpg Reference Design: Analog Devices

The AD5570 is a single 16-bit serial input, voltage output DAC that operates from supply voltages of ±11.4 V up to ±16.5 V. Integral linearity (INL) and differential nonlinearity (DNL) are accurate to 1 LSB. During power-up, when the supply voltages are changing, VOUT is clamped to 0 V via a low impedance path.
AD5570
EVAL-AD5629RSDZ ad5629.jpg Reference Design: Analog Devices

The AD5629R device is a low power, octal, 12-bit, buffered voltage-output DACs. It operates from a single 2.7 V to 5.5 V supply and is guaranteed monotonic by design.
AD5629R
EVAL-AD5668SDCZ img_ad5668.jpg Reference Design: Analog Devices

The AD5668 device is a low power, octal, 16-bit, buffered voltage-output DAC. The device operates from a single 2.7 V to 5.5 V supply and is guaranteed monotonic by design.
AD5668
EVAL-AD5669RSDZ ad5669.jpg Reference Design: Analog Devices

The AD5669R device is a low power, octal, 16-bit, buffered voltage-output DACs. It operates from a single 2.7 V to 5.5 V supply and is guaranteed monotonic by design.
AD5669R
EVAL-AD5684RSDZ img_ad5686r.jpg Reference Design: Analog Devices

The AD5684R is a low power, quad, 12-bit buffered voltage output DACs. The device includes a 2.5 V, 2 ppm/°C internal reference (enabled by default) and a gain select pin giving a full-scale output of 2.5 V (gain = 1) or 5 V (gain = 2). The device operates from a single 2.7 V to 5.5 V supply, is guaranteed monotonic by design, and exhibits less than 0.1% FSR gain error and 1.5 mV offset error performance.
AD5684R
EVAL-AD5686RSDZ img_ad5686r.jpg Reference Design: Analog Devices

The AD5686R is a low power, quad, 12-bit buffered voltage output DACs. The device includes a 2.5 V, 2 ppm/°C internal reference (enabled by default) and a gain select pin giving a full-scale output of 2.5 V (gain = 1) or 5 V (gain = 2). The device operates from a single 2.7 V to 5.5 V supply, is guaranteed monotonic by design, and exhibits less than 0.1% FSR gain error and 1.5 mV offset error performance.
AD5686R
EVAL-AD5694RSDZ img_ad5694r.jpg Reference Design: Analog Devices

The AD5694R nanoDAC is a quad, 12-bit, rail-to-rail, voltage output DAC. The device includes a 2.5V, 2ppm/°C internal reference (enabled by default) and a gain select pin giving a full-scale output of 2.5V (gain=1) or 5V (gain=2). The device operates from a single 2.7 V to 5.5 V supply, is guaranteed monotonic by design and exhibits less than 0.1% FSR gain error and 1.5mV offset error performance.
AD5694R
EVAL-AD5696RSDZ img_ad5696r.jpg Reference Design: Analog Devices

The AD5696R nanodac is a quad, 16-bit, rail-to-rail, voltage output dac. the device includes a 2.5v, 2ppm/°c internal reference (enabled by default) and a gain select pin giving a full-scale output of 2.5v (gain=1) or 5v (gain=2). the device operates from a single 2.7 v to 5.5 v supply, is guaranteed monotonic by design and exhibits less than 0.1% fsr gain error and 1.5mv offset error performance.
AD5696R
EVAL-AD5755SDZ img_ad5755.jpg Reference Design: Analog Devices

The AD5755 is a quad, voltage and current output DAC that operates with a power supply range from -26.4 V to +33 V. On-chip dynamic power control minimizes package power dissipation in current mode. This is achieved by regulating the voltage on the output driver from 7.4 V to 29.5 V using a dc-to-dc boost converter optimized for minimum on chip power dissipation.
AD5755
EVAL-AD5755-1SDZ img_ad5755.jpg Reference Design: Analog Devices

The AD5755-1 is a quad, voltage and current output DAC, that operates with a power supply range from -26.4 V to +33 V. On chip dynamic power control minimizes package power dissipation in current mode. This is achieved by regulating the voltage on the output driver from between 7.4 V to 29.5 V using a dc-to-dc boost converter optimized for minimum on-chip power dissipation. Each channel has a corresponding CHART pin so that HART signals can be coupled onto the current output of the AD5755-1.
AD5755-1
EVAL-AD5757SDZ img_ad5757.jpg Reference Design: Analog Devices

The AD5757 is a quad, current output DAC that operates with a power supply range from 10.8 V to 33 V. On-chip dynamic power control minimizes package power dissipation by regulat-ing the voltage on the output driver from 7.4 V to 29.5 V using a dc-to-dc boost converter optimized for minimum on-chip power dissipation.
AD5757
EVAL-AD5780SDZ img_ad5780.jpg Reference Design: Analog Devices

The AD5760 is a true 16-bit, unbuffered voltage output DAC that operates from a bipolar supply of up to 33 V. The AD5760 accepts a positive reference input range of 5 V to VDD - 2.5 V and a negative reference input range of VSS + 2.5 V to 0 V. The AD5760 offers a relative accuracy specification of ±0.5 LSB maximum range, and operation is guaranteed monotonic with a ±0.5 LSB DNL maximum range specification.
AD5760
EVAL-AD5780SDZ img_ad5780.jpg Reference Design: Analog Devices

The AD5780 is a true 18-bit, unbuffered voltage out DAC that operates from a bipolar supply up to 33V. Both reference inputs are buffered on chip and external buffers are not required.The AD5780 accepts a positive reference input in the range of 5V to VDD – 2.5V and a negative reference input in the range of VSS + 2.5v to 0V. The AD5780 offers relative accuracy of +/-1 LSB max and operation is guaranteed monotonic with a ±1 LSB DNL max range specification.
AD5780
EVAL-AD5781SDZ img_ad5781.jpg Reference Design: Analog Devices

The AD5781 is a high precision, 18-bit digital-to-analog converter (DAC), designed to meet the requirements of precision control applications. The output range of the AD5781 is configured by two reference voltage inputs. The device is specified to operate with a dual power supply of up to 33 V.
AD5781
EVAL-AD5790SDZ img_ad5790.jpg Reference Design: Analog Devices

The AD5790 is a single 20-bit, voltage out DAC that operates from a bipolar supply up to 33V. Reference buffers are also provided on-chip. The AD5790 accepts a positive reference input in the range of 5V to VDD – 2.5V and a negative reference input in the range of VSS + 2.5v to 0V. The AD5790 offers a relative accuracy of +/-2 LSB's max and operation is guaranteed monotonic with a -1 LSB to +3 LSB's DNL specification.
AD5790
EVAL-AD5791SDZ img_ad5791.jpg Reference Design: Analog Devices

The AD5791 is a single 20-bit, unbuffered voltage-output DAC that operates from a bipolar supply of up to 33 V. The AD5791 accepts a positive reference input in the range 5 V to VDD - 2.5 V and a negative reference input in the range VSS + 2.5 V to 0 V. It offers a relative accuracy specification of ±1 LSB max, and operation is guaranteed monotonic with a ±1 LSB DNL maximum specification.
AD5791
Digital Potentiometers
EVAL-AD5110SDZ ad5111_kc705.jpg Reference Design: Analog Devices

The AD5110 provides provide a nonvolatile solution for 128-/64-/32-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the A, B, and W pins. The low resistor tolerance, low nominal temperature coefficient and high bandwidth simplify open-loop applications, as well as tolerance matching applications. The new low wiper resistance feature minimizes the wiper resistance in the extremes of the resistor array to only 45 O, typical. The wiper settings are controllable through an I2C-compatible digital interface that is also used to readback the wiper register and EEPROM content. Resistor tolerance is stored within EEPROM, providing an end-to-end tolerance accuracy of 0.1%.
AD5110
EVAL-AD5111SDZ ad5111_kc705.jpg Reference Design: Analog Devices

The AD5111 provides a nonvolatile solution for 128-/64-/32-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the A, B, and W pins. The low resistor tolerance, low nominal temperature coefficient, and high bandwidth simplify open-loop applications, as well as tolerance matching applications. The new low wiper resistance feature minimizes the wiper resistance in the extremes of the resistor array to only 45 O, typical. A simple 3-wire up/down interface allows manual switching or high speed digital control with clock rates up to 50 MHz.
AD5111
EVAL-AD5162SDZ ad5162.jpg Reference Design: Analog Devices

The AD5162 provides a compact 3 mm x 4.9 mm packaged solution for dual 256 position adjustment applications. This device performs the same electronic adjustment function as a 3-terminal mechanical potentiometer. Available in four different end-to-end resistance values (2.5 k, 10 k, 50 k, 100 k), this low temperature coefficient device is ideal for high accuracy and stability-variable resistance adjustments.The wiper settings are controllable through the SPI compatible digital interface.
AD5162
EVAL-AD5172SDZ ad5172.jpg Reference Design: Analog Devices

The AD5172/AD5173 are dual-channel, 256-position, one-time programmable (OTP) digital potentiometers that employ fuse link technology to achieve memory retention of resistance settings. OTP is a cost-effective alternative to EEMEM for users who do not need to program the digital potentiometer setting in memory more than once. These devices perform the same electronic adjustment function as mechanical potentiometers or variable resistors with enhanced resolution, solid-state reliability, and superior low temperature coefficient performance.
AD5172
EVAL-AD5232SDZ ad5232.jpg Reference Design: Analog Devices

The AD5232 provides a nonvolatile, dual-channel, digitally controlled variable resistor (VR) with 256-position resolution. This device performs the same electronic adjustment function as a mechanical potentiometer with enhanced resolution, solid state reliability, and superior low temperature coefficient performance. The versatile programming of the AD5232, performed via a microcontroller, allows multiple modes of operation and adjustment.
AD5232
EVAL-AD5235SDZ img_ad5235.jpg Reference Design: Analog Devices

The AD5235 is a dual-channel, 1024-position, nonvolatile memory digital potentiometer. With versatile programmability, the AD5235 allows multiple modes of operation, including read/write access in the RDAC and EEMEM registers, increment/decrement of resistance, resistance changes in ±6 dB scales, wiper setting read-back, and extra EEMEM for storing user-defined information, such as memory data for other components or a lookup table. The AD5235 supports dual-supply ±2.25 V to ±2.75 V operation and single-supply 2.7 V to 5.5 V operation, making the device suited for battery-powered applications and many other applications. In addition, the AD5235 uses a versatile SPI-compatible serial interface, allowing speeds of up to 50 MHz.
AD5235
EVAL-AD5252SDZ ad5254.jpg Reference Design: Analog Devices

The AD5252 is a dual channel, digitally controlled variable resistor (VR) with resolutions of 256 positions. This device performs the same electronic adjustment function as a potentiometer or variable resistor. The AD5252’s versatile programming via a Micro Controller allows multiple modes of operation and adjustment.
AD5252
EVAL-AD5254SDZ ad5254.jpg Reference Design: Analog Devices

The AD5254 is quad-channel, I2C, nonvolatile memory, digitally controlled potentiometers with 256 positions, respectively. This device performs the same electronic adjustment functions as mechanical potentiometers, trimmers, and variable resistors.
AD5254
EVAL-AD5270SDZ img_ad5270.jpg Reference Design: Analog Devices

The AD5270 is single-channel, 1024-position digital rheostat that combines industry leading variable resistor performance with nonvolatile memory (NVM) in a compact package.
AD5270
EVAL-AD5272SDZ ad5272.jpg Reference Design: Analog Devices

The AD5272 is single-channel, 1024-position digital rheostat that combines industry leading variable resistor performance with nonvolatile memory (NVM) in a compact package.
AD5272
EVAL-AD8403SDZ img_ad8403.jpg Reference Design: Analog Devices

The AD8403 provides a quad channel, 256 position digitally controlled variable resistor (VR) device. This device performs the same electronic adjustment function as a potentiometer or variable resistor. The AD8403 contains four independent variable resistors in 24-lead PDIP, SOIC and TSSOP packages. Each part contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the controlling serial input register. The resistance between the wiper and either endpoint of the fixed resistor varies linearly with respect to the digital code transferred into the VR latch. Each variable resistor offers a completely programmable value of resistance, between the A terminal and the wiper or the B terminal and the wiper. The fixed A to B terminal resistance of 1 kO, 10 kO, 50 kO or 100 kO has a ±1% channel-to-channel matching tolerance with a nominal temperature coefficient of 500 ppm/°C. A unique switching circuit minimizes the high glitch inherent in traditional switched resistor designs avoiding any make-before-break or break-before-make operation.
AD8403
EVAL-ADN2850SDZ img_adn2850.jpg Reference Design: Analog Devices

The ADN2850 is a dual-channel, nonvolatile memory, digitally controlled resistors with 1024-step resolution, offering guaranteed maximum low resistor tolerance error of ±8%. The device performs the same electronic adjustment function as a mechanical rheostat with enhanced resolution, solid state reliability, and superior low temperature coefficient performance. The versatile programming of the ADN2850 via an SPI®-compatible serial interface allows 16 modes of operation and adjustment including scratchpad programming, memory storing and restoring, increment/decrement, ±6 dB/step log taper adjustment, wiper setting readback, and extra EEMEM for user-defined information such as memory data for other components, look-up table, or system identification information.
ADN2850
Direct Digital Synthesis ( DDS) & Modulators
EVAL-AD9833SDZ img_ad9833.jpg Reference Design: Analog Devices

The AD9833 is a low power, programmable waveform generator capable of producing sine, triangular, and square wave outputs. Waveform generation is required in various types of sensing, actuation, and time domain reflectometry (TDR) applications. The output frequency and phase are software programmable, allowing easy tuning. No external components are needed. The frequency registers are 28 bits; with a 25 MHz clock rate, resolution of 0.1 Hz can be achieved. Similarly, with a 1 MHz clock rate, the AD9833 can be tuned to 0.004 Hz resolution.
AD9833
EVAL-AD9834SDZ img_ad9834.jpg Reference Design: Analog Devices

The AD9834 is a 75 MHz low power DDS device capable of producing high performance sine and triangular outputs. It also has an on-board comparator that allows a square wave to be produced for clock generation. Consuming only 20 mW of power at 3 V makes the AD9834 an ideal candidate for power-sensitive applications.
AD9834
EVAL-AD9837SDZ img_ad9837.jpg Reference Design: Analog Devices

The AD9837 is a low power, programmable waveform generator capable of producing sine, triangular, and square wave outputs. Waveform generation is required in various types of sensing, actuation, and time domain reflectometry (TDR) applications. The output frequency and phase are software programmable, allowing easy tuning. The frequency registers are 28 bits: with a 16 MHz clock rate, resolution of 0.06 Hz can be achieved; with a 5 MHz clock rate, the AD9837 can be tuned to 0.02 Hz resolution.
AD9837
EVAL-AD9838SDZ img_ad9838.jpg Reference Design: Analog Devices

The AD9838 is a low power DDS device capable of producing high performance sine and triangular outputs. It also has an on-board comparator that allows a square wave to be produced for clock generation. Consuming only 11 mW of power at 2.3 V the AD9838 is an ideal candidate for power-sensitive applications.
AD9838
MEMS Microphones
EVAL-ADMP441Z admp441.jpg Reference Design: Analog Devices

The ADMP441 is a high performance, low power, digital output, omnidirectional MEMS microphone with a bottom port. The complete ADMP441 solution consists of a MEMS sensor, signal conditioning, an analog-to-digital converter, antialiasing filters, power management, and an industry standard 24-bit I2S inter-face. The I2S interface allows the ADMP441 to connect directly to digital processors, such as DSPs and microcontrollers, with-out the need for an audio codec in the system. The ADMP441 has a high SNR and high sensitivity, making it an excellent choice for far field applications. The ADMP441 has a flat wideband frequency response, resulting in natural sound with high intelligibility. A built-in particle filter provides high reliability.
ADMP441
PLL Synthesizers / VCOs
EVAL-ADF4001SD1Z img_adf4001.jpg Reference Design: Analog Devices

The ADF4001 frequency synthesizer can be used to implement clock sources for PLLs that require very low noise, stable reference signals. It consists of a low-noise digital PFD (Phase Frequency Detector), a precision charge pump, a programmable reference divider, and a programmable 13-bit N counter. In addition, the 14-bit reference counter (R Counter), allows selectable REFIN frequencies at the PFD input. A complete PLL (Phase-Locked Loop) can be implemented if the synthesizer is used with an external loop filter and VCO (Voltage Controlled Oscillator) or VCXO (Voltage Controlled Crystal Oscillator). The N min value of 1 allows flexibility in clock generation.
ADF4001
EVAL-ADF4002SD1Z img_adf4001.jpg Reference Design: Analog Devices

The ADF4002 frequency synthesizer is used to implement local oscillators in the upconversion and downconversion sections of wireless receivers and transmitters. It consists of a low noise digital phase frequency detector (PFD), a precision charge pump, a programmable reference divider, and programmable N divider. The 14-bit reference counter (R counter) allows selectable REFIN frequencies at the PFD input. A complete phase-locked loop (PLL) can be implemented if the synthesizer is used with an external loop filter and voltage controlled oscillator (VCO). In addition, by programming R and N to 1, the part can be used as a standalone PFD and charge pump.
ADF4002
EVAL-ADF4106SD1Z img_adf4106.jpg Reference Design: Analog Devices

The ADF4106 frequency synthesizer is used to implement local oscillators in the up-conversion and down-conversion sections of wireless receivers and transmitters. It consists of a low noise, digital phase frequency detector (PFD), a precision charge pump, a programmable reference divider, programmable A counter and B counter, and a dual-modulus prescaler (P/P + 1). The A (6-bit) counter and B (13-bit) counter, in conjunction with the dual-modulus prescaler (P/P + 1), implement an N divider (N = BP + A). In addition, the 14-bit reference counter (R Counter) allows selectable REFIN frequencies at the PFD input. A complete phase-locked loop (PLL) can be implemented if the synthesizer is used with an external loop filter and voltage controlled oscillator (VCO). Its very high bandwidth means that frequency doublers can be eliminated in many high frequency systems, simplifying system architecture and reducing cost.
ADF4106
EVAL-ADF4153SD1Z img_adf4156.jpg Reference Design: Analog Devices

The ADF4153 is a fractional-N frequency synthesizer that implements local oscillators in the up-conversion and down-conversion sections of wireless receivers and transmitters. It consists of a low noise digital phase frequency detector (PFD), a precision charge pump, and a programmable reference divider. There is a Σ-Δ based fractional interpolator to allow programmable fractional-N division. The INT, FRAC, and MOD registers define an overall N divider (N = (INT + (FRAC/MOD))). In addition, the 4-bit reference counter (R counter) allows selectable REFIN frequencies at the PFD input. A complete phase- locked loop (PLL) can be implemented if the synthesizer is used with an external loop filter and a voltage controlled oscillator (VCO).
ADF4153
EVAL-ADF4156SD1Z img_adf4156.jpg Reference Design: Analog Devices

The ADF4156 is a 6.2 GHz fractional-N frequency synthesizer that implements local oscillators in the upconversion and down-conversion sections of wireless receivers and transmitters. It consists of a low noise digital phase frequency detector (PFD), a precision charge pump, and a programmable reference divider. There is a S-? based fractional interpolator to allow programmable fractional-N division. The INT, FRAC, and MOD registers define an overall N divider (N = (INT + (FRAC/MOD))). The RF output phase is programmable for applications that require a particular phase relationship between the output and the reference. The ADF4156 also features cycle slip reduction circuitry, leading to faster lock times without the need for modifications to the loop filter.
ADF4156
EVAL-ADF4157SD1Z img_adf4156.jpg Reference Design: Analog Devices

The ADF4157 is a 6 GHz fractional-N frequency synthesizer with a 25-bit fixed modulus, allowing subhertz frequency resolution at 6 GHz. It consists of a low noise digital phase frequency detector (PFD), a precision charge pump, and a programmable reference divider. There is a S-? based fractional interpolator to allow programmable fractional-N division. The INT and FRAC values define an overall N divider, N = INT + (FRAC/225). The ADF4157 features cycle slip reduction circuitry, which leads to faster lock times without the need for modifications to the loop filter.
ADF4157
Synchro/Resolver to Digital Converters
EVAL-AD2S1205 ad2s1205.jpg Reference Design: Analog Devices

The AD2S1205 is a complete 12-bit resolution tracking resolver-to-digital converter that contains an on-board programmable sinusoidal oscillator providing sine wave excitation for resolvers. The converter accepts 3.15 V p-p ± 27% input signals on the Sin and Cos inputs. A Type II tracking loop is employed to track the inputs and convert the input Sin and Cos information into a digital representation of the input angle and velocity. The maximum tracking rate is a function of the external clock frequency. The performance of the AD2S105 is specified across a frequency range of 8.192 MHz ± 25%, allowing a maximum tracking rate of 1250 rps.
AD2S1205
Circuits from the Lab
EVAL-CN0150A-SDPZ cn0150.jpg Reference Design: Analog Devices

This circuit measures RF power at any frequency from 1 MHz to 8 GHz over a range of approximately 60 dB. The measurement result is provided as a digital code at the output of a 12-bit ADC with serial interface and integrated reference. The output of the RF detector has a glueless interface to the ADC and uses most of the ADC’s input range without further adjustment. A simple two-point system calibration is performed in the digital domain.
CN0150
EVAL-CN0178-SDPZ cn0178.jpg Reference Design: Analog Devices

This circuit uses the ADL5902 TruPwr™ detector to measure the rms signal strength of RF signals with varying crest factors (peak-to-average ratio) over a dynamic range of approximately 65 dB and operates at frequencies from 50 MHz up to 9 GHz.
CN0178
EVAL-CN0187-SDPZ cn0187.jpg Reference Design: Analog Devices

This circuit measures peak and rms power at any RF frequency from 450 MHz to 6 GHz over a range of approximately 45 dB. The measurement results are converted to differential signals in order to eliminate noise and are provided as digital codes at the output of a 12-bit SAR ADC with serial interface and integrated reference. A simple twopoint calibration is performed in the digital domain.
CN0187
EVAL-CN0188-SDPZ cn0188.jpg Reference Design: Analog Devices

This circuit monitors current in individual channels of -48 V to better than 1% accuracy. The load current passes through a shunt resistor, which is external to the circuit. The shunt resistor value is chosen so that the shunt voltage is approximately 50 mV at maximum load current.
CN0188
EVAL-CN0189-SDPZ cn0189.jpg Reference Design: Analog Devices

The CN-0189 circuit incorporates a dual axis ADXL203 accelerometer and the AD7887 12-bit successive approximation (SAR) ADC to create a dual axis tilt measurement system.
CN0189
EVAL-CN0194-SDPZ cn0194.jpg Reference Design: Analog Devices

This circuit provides galvanic isolation for high speed, high accuracy, simultaneous sampling analog-todigital conversion applications. The 16-bit AD7685 PulSAR ADC is versatile and allows monitoring of multiple channels through daisy chaining. An input circuit based on the AD8615 op amp level shifts, attenuates, and buffers a ±10 V industrial signal to match the input requirements of the ADC. The flexible circuit includes a precision ADR391 reference and two quadchannel ADuM1402 digital isolators to provide a compact and cost effective solution to a popular industrial data acquisition application.
CN0194
EVAL-CN0202-SDPZ cn0202.jpg Reference Design: Analog Devices

This circuit provides a full function, high voltage (up to 44 V), flexible, programmable analog output solution that meets most requirements for programmable logic controller (PLC) and distributed control system (DCS) applications.
CN0202
EVAL-CN0203-SDPZ cn0203.jpg Reference Design: Analog Devices

This circuit provides a full function, high voltage (up to 44 V), flexible, programmable analog output solution that meets most requirements for programmable logic controller (PLC) and distributed control system (DCS) applications.
CN0203
EVAL-CN0204-SDPZ cn0204.jpg Reference Design: Analog Devices

This circuit provides a full function, high voltage (up to 44 V), flexible, programmable analog output solution that meets most requirements for programmable logic controller (PLC) and distributed control system (DCS).
CN0204
EVAL-CN0209-SDPZ cn0209.jpg Reference Design: Analog Devices

This circuit provides a fully programmable universal analog front end (AFE) for process control applications. The following inputs are supported: 2-, 3-, and 4- wire RTD configurations, thermocouple inputs with cold junction compensation, unipolar and bipolar input voltages, and 4 mA-to-20 mA inputs.
CN0209
EVAL-CN0216-SDPZ cn0216.jpg Reference Design: Analog Devices

This circuit is a precision weigh scale signal conditioning system. It uses the AD7791, a low power buffered 24-bit sigma-delta ADC along with two external ADA4528-1 zero-drift amplifiers. This solution allows for high dc gain with a single supply.
CN0216
EVAL-CN0218-SDPZ cn0218.jpg Reference Design: Analog Devices

This circuit monitors current in systems with high positive common-mode dc voltages of up to +500 V with less than 0.2% error. The load current passes through a shunt resistor, which is external to the circuit. The shunt resistor value is chosen so that the shunt voltage is approximately 500 mV at maximum load current.
CN0218
EVAL-CN0235-SDPZ cn0235.jpg Reference Design: Analog Devices

This board is a fully isolated lithium ion battery monitoring and protection system. Lithium ion (Li-Ion) battery stacks contain a large number of individual cells that must be monitored correctly in order to enhance the battery efficiency, prolong the battery life, and ensure safety.
CN0235
EVAL-CN0240-SDPZ cn0240.jpg Reference Design: Analog Devices

The circuit from the EVAL-CN0240-SDPZ board monitors bidirectional current from sources with dc voltages of up to ±270V with less than 1% linearity error. The load current passes through a shunt resistor, which is external to the circuit. The shunt resistor value is chosen so that the shunt voltage is approximately 100 mV at maximum load current.
CN0240
EVAL-CN0241-SDPZ cn0241.jpg Reference Design: Analog Devices

The circuit from this board is a classic high-side current sensing circuit topology with a single sense resistor. High-side current monitors are likely to encounter overvoltage conditions from transients or when the monitoring circuits are connected, disconnected, or powered down.
CN0241
EVAL-CN0271-SDPZ cn0271.jpg Reference Design: Analog Devices

The circuit from this board is a complete thermocouple signal conditioning circuit with cold junction compensation followed by a 16-bit sigma-delta (S-?) analog-to-digital converter (ADC).
CN0271
FMC-SDP Interposer Testing
SDP-FMC-IB1Z sdp_brkout.jpg Reference Design: Analog Devices

This project presents the steps to setup an environment for testing the FMC-SDP Interposer Board together with the ADZS-BRKOUT-EX3 SDP breakout board, the Xilinx KC705 FPGA board and the Xilinx Embedded Development Kit (EDK).
FMC-SDP Interposer, ADZS-BRKOUT-EX3 SDP breakout board